

INTREPID: Developing Power Efficient Analog Coherent Interconnects to Transform Data Center Networks

Co-Pl's: C. Schow (UCSB), K. Schmidtke (Facebook)

UCSB Faculty: J. Buckwalter, L. Coldren, J. Klamkin, A. Saleh

UCSB Students and Post-Docs: H. Andrade, T. Hirokawa, J. Liu, A. Maharry, T. Meissner, S. Misak, L. Valenzuela, Y. Xia, S. Bhat, F. Gambini, S. Pinna Facebook: Hans-Juergen Schmidtke, Ariel Hendel, Brian Taylor, Todd Hollmann, Jimmy Williams, Gilad Goldfarb, James Stewart **ARPA-E:** M. Haney (Program Director), A. Liu, J. Zahler

Integration of Photonic Interfaces into Chip Packages

Conventional Packaging: Low integration level limits performance and efficiency

INTREPID: Energy-efficient coherent links for

the datacenter

	5-7 YEARS: 2.5D Integration, Optics in Chip Package		
	Novel driver designs	Highly integrated photonics	
ASIC	\mathbf{N}	1	Advanced optical I/O

Analog Coherent WDM links

- Expanded link budgets enable photonic routing/switching
- Low power: no/very little DSP
- Target: 800Gb/s/fiber = 4λ @ 200Gb/s/ λ (dual-pol QPSK, 50 Gbaud/s)

Replace power-hungry electrical I/O with highlyefficient photonics and use the power saved to expand switch radix

Multimode VCSEL links

- Server connections (30m)
- 50G → 100G

Analog Coherent Links: Maximizing Energy Efficiency

Direct Detection

Detected power \propto (P_{laser} • A_{total})

 P_{laser} = laser power, A_{total} = total link attenuation

RX sensitivity sets energy efficiency

Sensitivity degrades with datarate

- Shrinking link budgets

Coherent Detection

Detected power $\propto \sqrt{(P_{laser} \cdot A_{total})} \cdot P_{LO}$

 P_{LO} = Local Oscillator (LO) power

~20dB improvement in RX sensitivity

Ability to compensate for insertion loss of optical routing/switching devices

Optical Phase Locked Loop (OPLL) \rightarrow Eliminating Power-Hungry DSP

OPLL locks phase and frequency of local oscillator allowing reception at low bit error-rate (BER) without forward error correction (FEC)

Scalability: added AWGR layer increases effective switch radix

Same number of servers with current technology

AWGR = Arrayed Waveguide Grating Router, passive optical device

Future: Optical-switch-based architecture

- Disaggregation
- **Configurability to** match workload
- High utilization
- Improved energy efficiency

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000848. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Open. Together.

