Berkeley A Resonant Switched-Capacitor based 48-to-12 V **Electrical Engineering and Computer Sciences** Bus Converter Achieving 2500 W/in³ Power Density Zichao Ye and 99.0% Peak Efficiency Robert Pilawa-Podgurski

Introduction

This work presents a new type of hybrid switched-capacitor based power converter, named cascaded resonant converter, which can have significantly higher efficiency than the stateof-the-arts. This disruptive technology has the potential to greatly reduce the energy loss in the power delivery system of data centers.

Why Hybrid Switched-Capacitor Converter

Capacitors have a energy density that is up to 100x higher than inductors. However, the inherent charge sharing loss mechanism significantly undermines this

Hybrid switched-capacitor converters use both capacitors and inductors in the power transfer process. The inductor behaves like a current source and can help recover the charge sharing loss, through an operation called *soft charging*.

Cascaded Resonant Converter

Hardware Implementation

	Nominal	Range
Input voltage	48 V	36 – 60 V
Output voltage	12 V	9 – 15 V
Output current	60 A	60 A
Power level	720 W	540 – 900 W
Switching frequency	100 kHz	91 – 111 kHz

Gate driver Bottom side Cascaded bootstrap

Dimensions (one phase): 1.38 x 0.46 x 0.22 inch (3.5 x 1.17 x 0.56 cm). Note: limited C_{in} and C_{out} are included

Component	Parameters
1 st stage MOSFET	40 V, 2.5 mΩ
1^{st} stage flying cap (C ₁)	35 V, 22 μF x 12 0805 X5R
1^{st} stage inductor (L ₁)	180 nH, XAL6030-181
1 st stage output cap (C _{mid})	50 V, 10 μF x 20 0805 X5R
2 nd stage MOSFET	25 V, 1.3 mΩ
2^{nd} stage flying cap (C ₂)	16 V, 10 μF x 16 0805 X5R
2^{nd} stage inductor (L ₂)	50 nH, SLC7530S
Gate driver	LM5113
Bootstrap diode	40 V Schottky

Note: the capacitance is the nominal value before dc derating

Comparison with buck converter

Experimental Results

500 (power stage only:

switches and passives)

full load: 97.41%,

peak: 98.61%

Google

Switched Tank

modified Dickson

50

Full load with fan cooling only

Open-loop load regulation

DCP FUTURE TECHNOLOGIES SYMPOSIUM

Open. Together.

54 V input, 4:1 fixed ratio, components

are not densely populated