A Resonant Switched-Capacitor based 48-to-12 V Berkeley \| EECS
 and 99.0\% Peak Efficiency

Introduction

This work presents a new type of hybrid switched-capacitor based power converter, named cascaded resonant converter, which can have significantly higher efficiency than the state-of-the-arts. This disruptive technology has the potential to greatly reduce the energy loss in the power delivery system of data centers.

Why Hybrid Switched-Capacitor Converter

Capacitors have a energy density that is up to $100 x$ higher than inductors. However, the inherent charge sharing loss mechanism significantly undermines this

Hybrid switched-capacitor converters use both capacitors and inductors in the power transfer process. The inductor behaves like a current source and can help recover the charge sharing loss, through an operation called soft charging.

Cascaded Resonant Converter

Hardware Implementation

Dimensions (one phase):
$1.38 \times 0.46 \times 0.22$ inch
$(3.5 \times 1.17 \times 0.56 \mathrm{~cm})$.
Note: limited $\mathrm{C}_{\text {in }}$ and $\mathrm{C}_{\text {out }}$ are included

Component	Parameters
$1^{\text {tr }}$ stage MOSFET	$40 \mathrm{v}, 2.5 \mathrm{~m} \Omega$
$1^{\text {st }}$ tage flying cap (C_{1})	$\begin{aligned} & 35 \mathrm{~V}, 22 \mu \mathrm{~F} \times 12 \\ & 0805 \mathrm{X} 5 \mathrm{R} \end{aligned}$
$1^{\text {tr }}$ stage inductor (L_{1})	$180 \mathrm{nH}, \mathrm{XAL} 6030-181$
$1^{\text {st }}$ tage output cap ($\mathrm{C}_{\text {mid }}$)	$\begin{aligned} & 50 \mathrm{~V}, 10 \mu \mathrm{~F} \times 20 \\ & 0805 \mathrm{X} 5 \mathrm{R} \end{aligned}$
$2^{\text {nd }}$ stage MOSFET	$25 \mathrm{v}, 1.3 \mathrm{~m} \Omega$
$2^{\text {nd }}$ stage flying cap (C_{2})	$\begin{aligned} & 16 \mathrm{~V}, 10 \mu \mathrm{~F} \times 16 \\ & 0805 \mathrm{X} 5 \mathrm{R} \end{aligned}$
$2^{\text {nd }}$ stage inductor (L_{2})	$50 \mathrm{nH}, \mathrm{SLC7530S}$
Gate driver	LM5113
Bootstrap diode	40 V Schottky

Experimental Results

Comparison with buck converter

Full load with fan cooling only

Open-loop load regulation

