

OCPMarch 20-212018SUMMITSan Jose, CA

OCP NIC 3.0 Collaboration

- An Open Hardware development Story

Joshua Held / Mechanical Engineer Yueming Li / Thermal Engineer Jia Ning / Hardware Engineering Manager Facebook, Inc

Agenda

Overview of project in the past one year OCP NIC 3.0 Mechanicals OCP NIC 3.0 Thermal

Background

OCP Mezzanine Cards

All accepted by the IC

Specification	Version	Submit Date	Contributor	License	Notes
OCP Mezzanine card v2.0 OCP_Mezz_2.0_rev1.00_20151215b_pub_release.pdf(2.2MB) OCP_Mezz_2.0_rev1.00_20151215b_pub_release_3D_package.zip (88MB) Mechanical 20151023_P1-P9_K1-K5 zip file (57MB)	V2.0- 1.0	Dec 15, 2015	Facebook	OWFa 1.0	Added support for x16 (quad x4), NCSI, dual QSFP+, & Quad SDP+ Accepted by OCP IC 2/24/2016
OCP Mezzanine card v0.5, original standard Mezzanine Card (rev 0.5)	V0.5	Oct 8, 2012	Facebook	OWFa 1.0	Defacto standard for the original network mezzanine with a x8 PCIe Gen3 interface

OCP Mezz v0.5

- Defined ~2012
- 10G Ethernet
- 2x SFP
- X8 PCIe Gen3
- I2C sideband

OCP Mezz v2.0

- Defined ~2015
- 10/25/40/50/100G Ethernet
- Up to 4x SFP28, 2x QSFP28, 4x RJ45
- X16 PCle Gen3
- NCSI sideband

OCP NIC 2.0 Limitation

Gates emerging use cases & blocks broader adoption

- Board space
- Mechanical and thermal profile
- Connector placement
- Specification quality

OCP NIC 3.0 Milestones

Define Problem Statement March to Mid-April '17

OCP Partner		Α		В		C		D		E
	90/10	50/50 confidences	90/10	50/50 confidences	90/10	50/50 confidences	90/10	50/50 confidences	90/10	50/50 confidences
	Very typical and Important use cases	Stretch goals and use cases	Very typical and Important use cases	Stretch goals and use cases	Very typical and Important use cases	Stretch goals and use cases	Very typical and Important use cases	Stretch goals and use cases	Very typical and Important use cases	Stretch goals and use cases
# and Type of I/O Ports	2, (2xSFP/SFP28, 2xQSFP/QSFP28)	2, (2xSFP/SFP28, 2xQSFP/QSFP28)	1-4 ports SFP+ or Base-T, or 1-2 QSFF	1-4 ports SFP+ or Base-T, or 1-2 QSFF	Dual port(side by side/Belly to Belly) 200Gb	Dual port(side by side/Belly to Belly) 200Gb	2 x SFP		4 *SFP , or 2*QSFP, or 4*FC, or 2*SA	5
# of major IC (ASIC, FPGA, or other)	1	1	1 or 2 (ASIC, ASIC+PHY)	2 or 3 (ASIC + FPGA/SoC + PHY)	1	2	2	2	2 (controller + Phy)	
# of DRAM	6 x 16	12 x16	10	20	N/A	N/A	0 or 2	2+	0 or 2	
Power envelope of IC#1 (Max power at Tj max)	15	20	20	50	30	50	15	35	20	30
Max T_case of IC#1	95	95	105	110	105	105	105		105	105
IC#1 mechanical dimension (WxLxH)	33x33x2.5	45x45x3.7	25x25x 3.7	45x45x3.7	31x31	45x45	27 x 27mm + IC2 (or 47 x 47mm single chip)	35 x 35mm + IC2 (or 47 x 47mm single chip)	25x25	
If Applicable:	N/A	N/A	Phy	Phy	N/A	N/A				
Power envelope of IC#2 (Max power at Tj max)	N/A	N/A	3W per port	3W per port, total <50W	N/A	N/A	20W		10w	
Max T_case of IC#2	N/A	N/A	105	110	N/A	N/A	110		110	
IC#2 mechanical dimension (WxLxH)	N/A	N/A	19x19x~2.5 mm	19x19~2.5 mm	N/A	N/A	25 x 25		25x25	
If Applicable:	N/A	N/A	N/A	FPGA/SoC	N/A	N/A	N/A	N/A	N/A	N/A
Power envelope of IC#2 (Max power at Tj max)	N/A	N/A	N/A	TBD, total < 50W	N/A	N/A	N/A	N/A	N/A	N/A
Max T_case of IC#2	N/A	N/A	N/A	105	N/A	N/A	N/A	N/A	N/A	N/A
IC#2 mechanical dimension (WxLxH)	N/A	N/A	N/A	25x25x3.7	N/A	N/A	N/A	N/A	N/A	N/A
If Applicable:										
DRAM Power (each component at Tj max)	0.33	0.5	0.4	0.4						
Max T_case of DRAM	95	95	95	95			95C		80	80
If Applicable:										
# of Optical modules	0	2	1-4 SFP+, or 1-2 QSFP	1-4 SFP+, or 1-2 QSFP			4		4	
Optical Module power (each)	0	1.5	1.5 watts (SFP+), 3.5 watts (QSFP)	1.5 watts (SFP+), 3.5 watts (QSFP)			1.5W each		1.5W each	
Optical Module Max Tcase	0	70	70 deg C	85 deg C			85C	70C	85C	
System air flow direction	Inlet	Inlet	Both	Both	Port to ASIC, 35C ambient	Port to ASIC, 35C ambient	Hot aisle operation; Air inlet to car max temp 55C	d Hot aisle operation; Air inlet to car max temp 65C	front to rear , IO on rear, temp hitting IO up to 70C	

Solution Exploration and Convergence

14x solution options proposed and evaluated

Option 14

Mid-April to end-of-September'17

3.87

Re Network I/O

Dallas Workshop

- First F2F workshop
 - Met each other in person
 - Had an open discussion
 - Accelerated the collaboration

Sep 25th, 2017

Solution Overview

- 2x Form factors (SFF and LFF)
- SFF-TA-1002 connector
- 32 lanes of PCIe Gen4
- -4x of OCP NIC 2.0
- EMI containment
- Front service
- 80W/150W power delivery
- Larger thermal potential in similar profile
- NIC management features

Latest specification : <u>http://www.opencompute.org/wiki/Server/Mezz</u>

Draft – Review - Approval

Oct'17 to Jan'18

15x General specification working sessions **11x** Mechanical specific working sessions **6x** Thermal specific working sessions 41x doc revisions

> **1** Specification Mechanical 3D models Mechanical 2D models Thermal simulation models Thermal test fixture model

Community partners

Amphenol Corporation **Broadcom Limited** Dell, Inc. Facebook, Inc. Hewlett Packard Enterprise Company Intel Corporation Lenovo Group Ltd Mellanox Technologies, Ltd Netronome Systems, Inc. Quanta Computer Inc. **TE Connectivity Corporation** And many more!

OCP NIC 3.0 Design Specification

Version 0.70

Implementation and Refinement

0v70 – Initial release Jan 25th,2018

> Ov80 – Hot fixes End of March'18

Ov90 – Add Signal Integrity Guideline and Conformance TBD

1v00 – Add Implementation Learning Q4'18

Subgroup Wiki with latest specification : <u>http://www.opencompute.org/wiki/Server/Mezz</u> Mailing list: <u>http://lists.opencompute.org/mailman/listinfo/opencompute-mezz-card</u>

OCP NIC 3.0 Mechanicals

OCP Mezz 2.0 vs OCP NIC 3.0

	Mezz 2.0			
Small Size	Non-Rectangle			
Small Area	8000 mm ²			
Large Size	NA			
Large Area	NA			
Expansion Direction	NA			
Connector style	Mezz			
PCB Orientations	Parallel			
Installation	In Chassis			
Installation Action	Parallel to Front/Rear Panel			
Hot Swap	No			
EMI Containment for Serviceability	High Difficulty			

NIC 3.0
76x115
8740 mm ²
139x115
15985 mm²
Side
Edge (.6mm pitch)
Parallel
Front/Rear Panel
Perpendicular to Front/Rear Panel
Yes
Low Difficulty

NIC 3.0 Configuration

NIC 3.0 Mechanical Goal:

Requirements:

- The same NIC design must work in both straddle and right angle configurations
- NICs might be oriented horizontally or vertically
- Retention and guidance must work with specified NIC v3.0 MB thicknesses
- Common mechanical features used across small and large form factors
- Some form of mechanism is required for seating large form factors due to mating forces
- Design of PCB should be flexible enough to support many component and connector configurations without need of mechanical changes
- Recommended mechanical designs will be included in the specification to simplify and reduce barriers to adoption

Develop universal form factors which shall include mechanicals and EMI containment.

NIC 3.0 Module Configuration

Features:

- Increased total PCB space
- Simplified component keep-in areas
- Scalable design to support large form factor
- Built in EMI containment
- Available in thumb screw or tool-less configurations with no PCB changes

17

11.5mm

NIC 3.0 Module Sizes

		Available Space		
	PCB Size	Top/Bottom Component	Routing Inner Layers	
	70.115	Placement	70.115	
Small Size (SFF)	76X115	70.58109	/6X115	
Large Size (LFF)	139x115	133.5x109	139x115	
		1		

subtract 5.5mm from width (card guide) subtract 6mm from length (edge connector)

NIC 3.0 SFF Module Versions

Single thumb screw version

Tool-less version

NIC 3.0 LFF Module Versions

Complete 3D CAD available at: http://www.opencompute.org/wiki/Server/Mezz

NIC 3.0 Chassis Examples

Complete 3D CAD available at: http://www.opencompute.org/wiki/Server/Mezz

OCP NIC 3.0 Thermal

Thermal Benefits for NIC 3.0

Mezz 2.0

- More space for heatsink with no bergstak connector on the side
- Up-facing heatsink permits flexibility on heatsink height
- LFF allows thermal potential for high-power ASIC cooling

NIC 3.0 SFF

NIC 3.0 LFF

Thermal Design Guidance – Cold Aisle

- For typical inlet temperature 35°C, SFF:
 - Support 15W ASICs under 100 LFM (Typical)
 - Support 23W ASICs under 200 LFM (High)

Complete CFD model available at: http://www.opencompute.org/wiki/Server/Mezz

Thermal Design Guidance – Hot Aisle

- Hot-aisle cooling is more challenging due to higher supply air temperature
- For typical inlet temperature 55°C, SFF:
 - Support 15W ASICs under 200 LFM (Typical)
 - Support 20W ASICs under 300 LFM (High)

Complete CFD model available at: http://www.opencompute.org/wiki/Server/Mezz

Thermal Test Fixture

- Purpose:
- **Features:**
 - Simple and easy adoption by both NIC and system vendors

 - Functional test board for power delivery and reporting interface

Preliminary 3D CAD available at: http://www.opencompute.org/wiki/Server/Mezz

- Provide standardized test data across different NIC and system vendors

- Representative thermal data to define cooling tiers across different use cases

Implementation and Refinement

0v70 – Initial release Jan 25th ,2018

0v80 – Hot fixes (Minor mechanical spec updates) End of Feb'18

0v90 – Add signal integrity guideline and conformance TBD

1v00 – Add Implementation learning (planned mechanical expansion) Q4'18

Subgroup Wiki with latest specification : <u>http://www.opencompute.org/wiki/Server/Mezz</u> Mailing list: <u>http://lists.opencompute.org/mailman/listinfo/opencompute-mezz-card</u>

