

A c c e l e r a t i n g L o a d B a l a n c i n g
p r o g r a m s u s i n g H W - B a s e d
H i n t s i n X D P
PJ Waskiewicz, Network Software Engineer
Neerav Parikh, Software Architect
Intel Corp.

• Overview eXpress Data path (XDP) Software Model
• NIC Hardware Capability
• Our Goals
• HW hints for XDP
• Metadata Passing
• Programming Hardware hints
• Initial Performance Results
• Next-steps
• Questions

Agenda

3

XDP Software Model
• eXpress Data Path (XDP) evolved as a Linux in kernel mechanism

bypassing regular kernel network stack to allow faster packet
processing for certain use-cases

• Typical XDP use-case applications: Firewall, Load balancer, Traffic
monitoring, etc.

• XDP utilizes Linux kernel eBPF infrastructure that associates an
eBPF program into NIC SW drivers data path

• XDP programs are continuing to evolve and are becoming more
complex

• A typical XDP program does following:
• Packet parsing: Identify the packet type (IPv4/v6, TCP/UDP, etc.) and extract

packet header information
• Based on the use-case then the XDP program

• may monitor incoming traffic on the network
• manipulate packets based on incoming traffic
• compute hash or xsums for modified packets
• make packet forwarding decisions based on some map table lookups
• Set up some meta data and return status back to the NIC SW driver to

indicate what to do with that packet
• XDP_PASS: Pass it to regular kernel network stack
• XDP_DROP: Drop the packet
• XDP_TX: Tx the packet out
• XDP_REDIRECT: Redirect the packet to another network device

ELF BPF

NIC HW

Port0

PF SW Driver

Kernel/network stack Kernel space

User Space
Packet Processing Application

xdp_buff
-data
-data_meta

xdp_ebpf

xd
p_

m
d

*

XDP_PASS, XDP_DROP, XDP_TX,

XDP_REDIRECT, XDP_DROP

HardwareRx

Socket application

ebpf

SYSCALL

libBPF

MAP Tables

ndo_bpf()

4Intel Corporation

NIC Hardware Rx Pipeline

5

Identify

Extract

Table
Lookup

Compute

Meta data

Switch Tables and
Actions

Driver and XDP hooks
XDP packet Buffer

Packet Parser

• What can present-day NIC Hardware can do to help:
• Accelerate what is being done in XDP programs in terms of packet processing
• Offset some of the CPU cycles used for packet processing

• Keep it consistent with XDP philosophy
• Avoid kernel changes as much as possible
• Keep it Hardware agnostic as much as possible
• Best effort acceleration
• A frame work that can change with changing needs of packet processing

• Expose the flexibility provided by programmable packet processing pipeline to adapt to XDP
program needs

Our Goal

6

Two problems to solve

• How do you dynamically program
the Hardware to get the XDP
program the right kind of packet
parsing help?

• How to pass the packet
parsing/map lookup hints that
the HW provides with every
packet into the XDP program so
that it can benefit from it?

7

data_hard_start

data

data_end

data_meta

Rx buffer Headroom

Packet Meta data from NIC

Packet

XDP Buffer

Intel Corporation

Programming HW hints

• Defining HW hints as ELF
sections of eBPF program and
program them at time of load

• Example fields to extract for a
packet:
• Packet types: IPv4/IPv6, TCP, UDP,

SCTP, ICMP
• Packet Header data: SMAC/DMAC,

SADDR/DADDR, next protocol
header offset

• Processing hints: Rx Hash on packet
fields, TCP connection flags
(SYN/SYN-ACK/FIN/RST)

8Intel Corporation

Programming Flow
• The ELF sections that carry HW

programming hints need to be passed over
to the driver in some form so that it can
program the HW accordingly

• Introduce some new helper
ndo_offload_xdp_hints() or traverse the
required hints when ndo_bpf() is called so
that the driver can call to extract what the
XDP program can use as hints and
program the HW accordingly.

• The driver hides all the HW programming
details, the hints format is generic for any
HW.

• A given HW may or may not be able to
provide all the hints.

• It’s a best effort mechanism to offload
what the HW can support.

9

ELF BPF

NIC HW

Port0

PF SW Driver

Kernel/network stack Kernel space

User Space
Packet Processing Application

xdp_buff
-data
-data_meta

xdp_ebpf

xd
p_

m
d

*

XD
P_PASS, XD

P_D
RO

P, XD
P_TX,

XD
P_RED

IRECT, XD
P_D

RO
P

HardwareR
x

Socket application

ebpf

SYSCALL

libBPF

MAP Tables

ndo_bpf()

Packet Hints

Program Hints
into hardware

Intel Corporation

Performance with and without hints

10

• XDP1: Linux kernel sample, parses packet to identify protocol, count and drop

• XDP3: Zero packet parsing (best case scenario), just drop all packets

• L4 LB: L4 Load Balancer sample application with multiple Virtual IP tunnels,
forwarding packets to destination based on hash calculations and lookup

• XDP_HINTS: Uses packet type (IPv4/v6, TCP/UDP, etc.) provided by driver as meta
data, no packet parsing, count and drop

• Hints Type 1: Protocol Type (IPv4/v6, TCP or UDP, etc.)

• Hints Type 2: Additional hints from type 1 including packet data like
source/destination IP addresses, source/destination ports, packet hash index (RSS)
generated by hardware

0
2,000,000
4,000,000
6,000,000
8,000,000

10,000,000
12,000,000
14,000,000
16,000,000

packets /s

XDP L4 LB - with no state tracking

XDP LB No Hints (1Q) XDP LB - Hints Type 1 (1Q) XDP LB - Hints Type 2 (1Q)

XDP LB No Hints (4Q) XDP LB - Hints Type 1 (4Q) XDP LB - Hints Type 2 (4Q)

0
1,000,000
2,000,000
3,000,000
4,000,000
5,000,000
6,000,000
7,000,000
8,000,000
9,000,000

packets /s

XDP L4 LB - with state tracking

XDP LB No Hints (1Q) XDP LB - Hints Type 1 (1Q) XDP LB - Hints Type 2 (1Q)

XDP LB No Hints (4Q) XDP LB - Hints Type 1 (4Q) XDP LB - Hints Type 2 (4Q)

Next steps

• Initial performance results using HW hints with simple XDP programs and
programs that don’t do much state tracking are promising

• Don’t see much benefit with programs that do state tracking
• Continued testing with newer Xeon systems and upstream Linux kernels
• Prototyping of eBPF-based HW hint programming needs to be completed

to allow creation of RFC patches to be sent to Linux kernel networking,
iovisor.org and eBPF community in general for wider feedback

• Call for action: OCP Networking community involvement?
http://www.opencompute.org/projects/networking

11Intel Corporation

https://www.dropbox.com/referrer_cleansing_redirect?hmac=F5K52jUdWrSnOHvTdllFxZX26OE8Ywm1CBc3wR2d5YI%3D&url=http://www.opencompute.org/projects/networking

Questions?

12

Backup

14Intel Corporation

Metadata layouts – what to do?
• Approach 1: Common layout

independent of underlying HW
• Requires community agreement on

common structures
• Would be in the UAPI

• Approach 2: Vendor libraries in eBPF
libraries

• Requires XDP/eBPF programs to detect
underlying hardware

• Approach 3: Chained XDP programs
• Lightweight “shim” would contain vendor-

specific logic
• Tail-call larger program with parsed

metadata to run rest of logic

data_hard_start

data

data_end

data_meta

Rx buffer Headroom

Packet Meta data from NIC

Packet

15Intel Corporation

Type of HW hint Size Description

Packet Type U16 A unique numeric value that identifies an ordered chain of headers that were discovered
by the HW in a given packet.

Header offset U16 Location of the start of a particular header in a given packet. Example start of innermost
L3 header.

Extracted Field
value

variable Example Inner most IPv6 address

Hash fields and
type

variable Hash on packet type and selected fields, selected hash type

HW Hints

16

Match U32 Match a packet on certain fields and the values, provide a SW marker as a hint if the packet matches
the rule

Checksum U32 A total packet Checksum

Packet Hash U32 Hash value calculated over specified fields and a given key for a given packet type

Ingress Timestamp U64 Packet timestamp as it arrives

Parsing Hints

Map Offload

Packet Processing
Hints

ELF Special Headers to request HW hints

17

struct bpf_hw_hints_def SEC("hw hints") rx_match = {
 .type = PACKET_MATCH,
 .fields = {PTYPE, INNER_L3_SRC, INNER_L4_SRC},
 .mask = { 0xff, 0.0.ff.ff, 0xffff},
 .value = { 0x10, 10.10.20.2, 65},
 .result = 25 /* This hints adds a match rule into Hw, which creates a SW defined result when Hw
finds a match */
 .size = sizeof(__u32),
 };

struct bpf_hw_hints_def SEC("hw hints") rx_offset = {

 .type = PACKET_OFFSET_INNER_L4,

 .size = sizeof(__u16),

 };

struct bpf_hw_hints_def SEC("hw hints") rx_ptype = {
 .type = PTYPE,
 .size = sizeof(__u16),
 }; /* PTYPE values should be agreed upon between the SW and
the HW providing the hints, the driver may have to do the translation
between the two */

