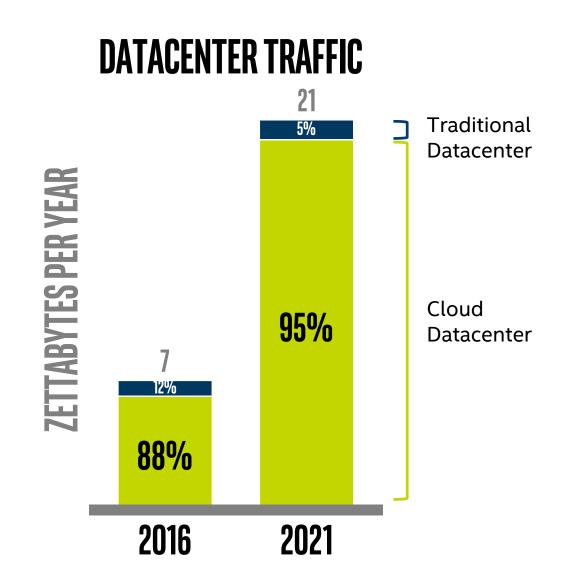


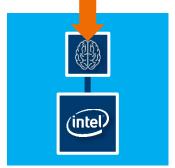
OPEN. FOR BUSINESS.

NEW WORKLOADS AND THE EVOLVING NETWORK


Uri Cummings Connectivity Group Chief Technical Officer, Data Center Group Intel Corporation

uri.cummings@intel.com

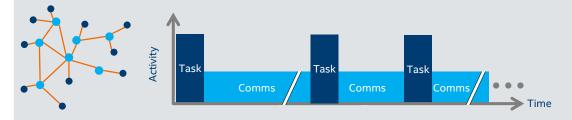
By 2021, 95% of all data center traffic will be based in the cloud.

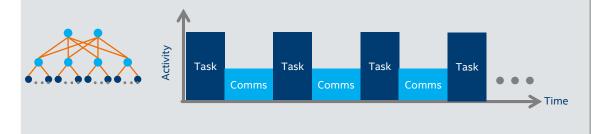


Data center network inflections

Critical workloads redefine the network

Cloud Scale: the big get bigger

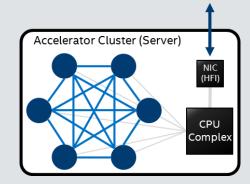

Pervasive offloads Distributed intelligence


Emerging workloads redefining the network Networks reconfigured for east-west, jitter reduction, and accelerators

TRADITIONAL NETWORKS AND DATACENTER FABRICS

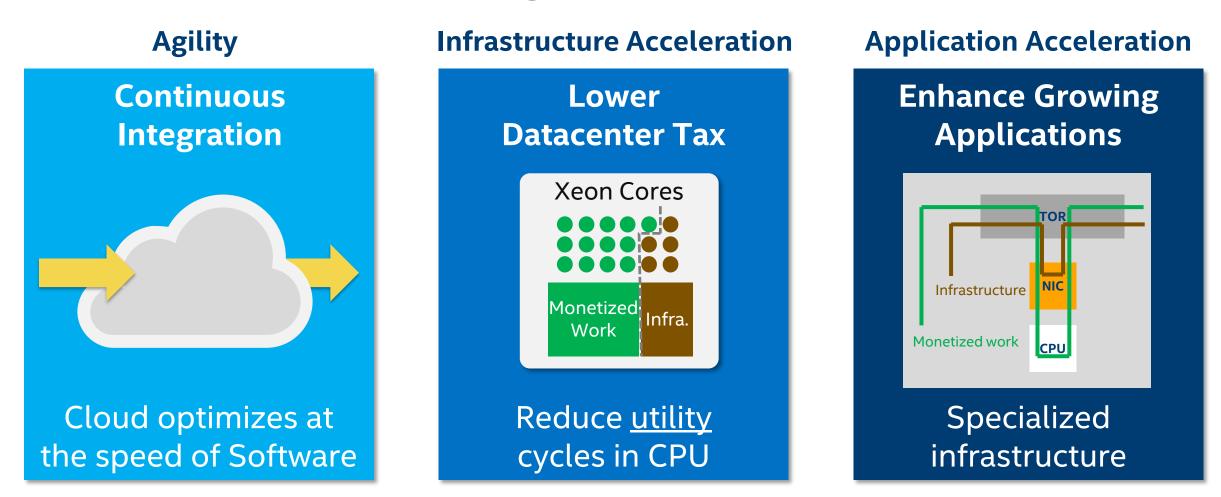
Network: Flexibly-connected topology that enables endpoints to share data (e.g., arbitrary non-cyclic topologies)

Scale-Out Fabric: Specialized form of a network, with a fully-connected topology, that is engineered and tuned to sustain performance & latency at high scale while reducing jitter (e.g., Cloud Ethernet and HPC Fabric)

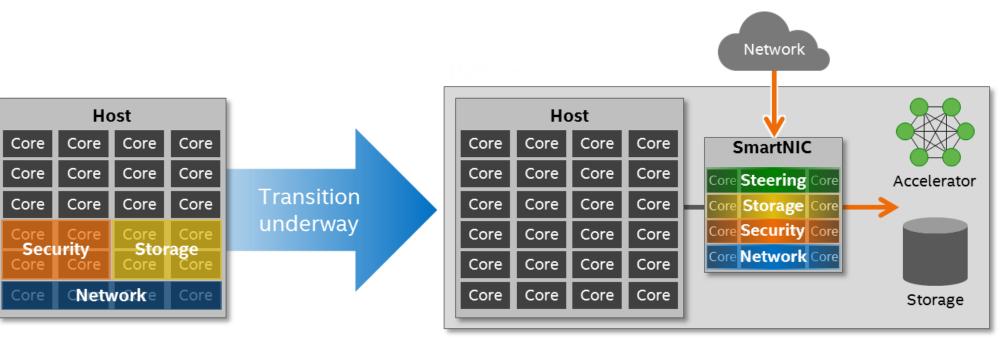

DATA AND THE EMERGENCE OF ACCELERATOR NETWORKS

Node-focused:

- Light-weight network that interconnects a cluster of local accelerators with highbandwidth, low-latency links
- Lowest power/bit
- •Code & connectivity optimized for locality
- Emerging Need: Data-lakes

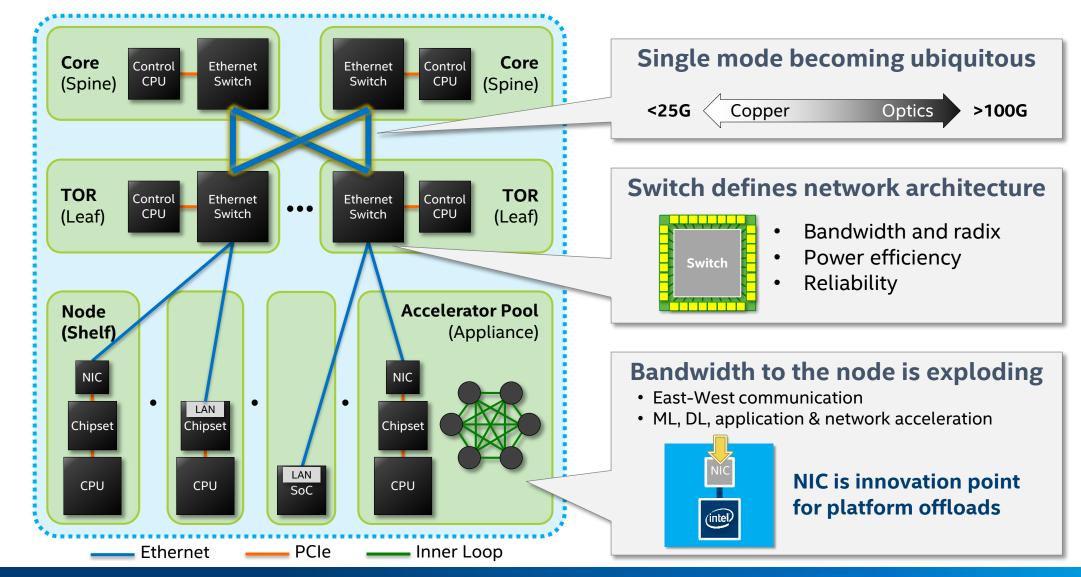

Accelerator scaling fabric:

Used for high-bandwidth memory sharing/coordination at larger scale
Allows separation of accelerator vs. general communications, minimizing interference in the scaling fabric.


The motivation driving acceleration and offload

Objective: Grow acceleration capabilities for network-related workloads

Emerging use case : bare-metal server


Bare metal servers

- Offer new usage models—full server rentals
- Improve infrastructure security in cloud
- Bolster performance, reduce cost/bit by removing bottlenecks

Cloud-era data center network

Pod

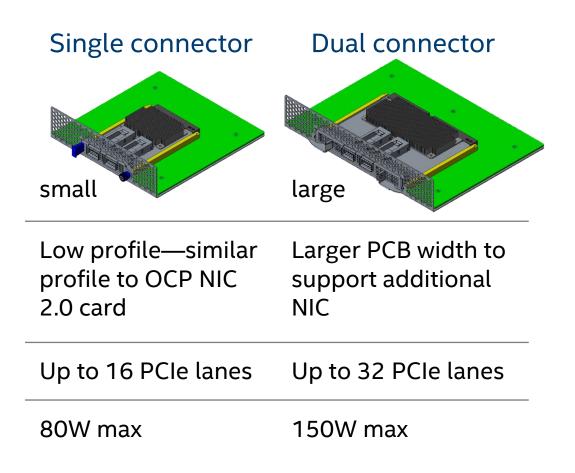
intel

8

Motivating smart NIC

Integrating end-to-end capabilities in the platform

CORES/COMPUTE	FPGA	HOST INTERFACES	INTERFACE TECH.	Programmable assets	
 Xeon/Core Atom Graphics/Media QAT/Crypto/Comp. Special purpose (accelerators) 	 Arria10 Stratix10 Flexible tile architecture 	 PCIe Gen3, 4 and 5 IAL (I/0, Memory, Cache) UPI/Coherent On-package (Rlink) 	 DMA SVM/Coherent Hardware queue engines Virtual device manager 	 FPGA CPUs Flexible state machines 	
NETWORK	SOFTWARE	PACKAGE	STORAGE MEMORY	 Networking assets Broad market NIC 	
 MAC/PHY/SerDes RDMA (RoCE, iWARP) OPA for HPC Packer parsers P4 engines Schedulers Switches 	 Compilers, tools WOS OTC/Intel Clear Linux P4 API working group Libraries/Standards bodies 	 BGA: Low-cost to large footprint Package MCP & Interfaces (Rlink) 	• NVMe	 Broad market NIC business Open source contribs DPDK 	



OCP NIC v3.0 enables the smart NIC

Joint effort across system/NIC/Connector suppliers and end users

Community development since Feb 2017 solved major challenges

- Improved serviceability
- Manage NIC / platform transition
- Ready for PCIe Gen4 and Gen5
- Enlarge PCB space for smart NIC use case
- Allow higher TDP ASICs
- Improve mechanical interface



Significant OCP contributions in...

OCP Ethernet Network Adapters

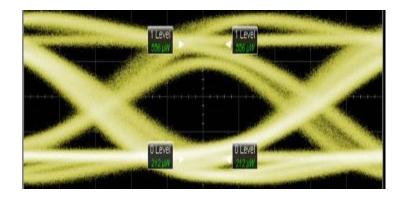
>25 OCP-compliant NIC and PHY SKUs, covering 1GbE, 10GbE, 25GbE, and 40GbE

>1M Intel-branded ports shipped in OCP form factor (excluding partner shipments)

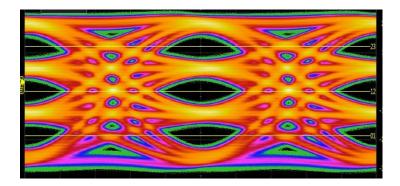
100G Silicon Photonics

Fully compliant with 100G CWDM4-OCP, CWDM4 MSA, QSFP, and CAUI-4 specs

500m, 2km, or 10km reach on duplex single mode fiber


Intel 400G CWDM8 QSFP-DD optical module

Technology for 400G is working in the lab



1271 nm	1291 nm	1311 nm	1331 nm	1351 nm	1371 nm	1391 nm	1411 nm
····		·····					
a Maria Maria Maria	din <mark>bili</mark>	Addison and the second	thainte hand	thread a state of the	and the state of the	Install street	n fan te fan te

400G Transmitter: Optical Output

400G Receiver: Host Side Electrical Output

DCP SUMMT