The Trend to Edge Computing

Diverging Switch Form Factors

David Iles – Mellanox Technologies

Microsoft

Google Cloud Platform

EQUINIX

DIGITAL REALTY

Data Center Ethernet Switch Ports (10G & Above)

Source: Crehan Research and Mellanox Estimates

White Box for Public Cloud

...a mixed bag

- Whitebox Switches Pros
 - **Right price**
 - Right port count
 - **Right NOS**

Whitebox Switch Cons

- Limited VXLAN scale
- VXLAN + 100G + Routing
- RoCE limitations

Future for Public Cloud

- 200/400 Gigabit Ethernet
- COBO Onboard Optics
- 277V Power Supplies
- Large scale tables/tunnels

Workloads are Moving Around

VXLAN is the tunnel of choice **Public Cloud** VXLAN VXLAN **On-Premise** VXLAN Edge

Cloud Connect Acceleration

Not All Workloads are Moving Off Premise

Switches Optimized for On Premise Computing

SWaP = Size, Weight & Power

SWaP for On Premise: Small, Fast, Flexible with Management Integration

Edge Computing

What's the opposite of data center consolidation?

Enterprise Edge

Media Edge

IOT Industrial Edge

Mobile Edge

Edge Computing Projection

50 Billion

50% of Data

Devices Connected to the Internet

\$1.7 Billion \$6.3 Billion 2015 2020 **Micro Data Center Market** (just facilities - does not include compute, network, storage)

By 2020:

Will be Processed at Network Edge

according to IDC

according to MarketsAndMarkets

What is Driving the Growth?

Disasters

Transportation

Colocation

Edge / Micro Data Centers

Hybrid Cloud / ROBO

IoT: Industrial

IoT: Smart Cities

Mobile Edge

Virtual Reality

Autonomous Vehicles

What is a Micro Data Center?

Small facility placing compute & storage close to users

Under 1 MW Power

Sometimes under 100 KW

Locations

- Cell towers
- Central Offices
- On-premise / business park / sports arena
- On Transportation ships, airplanes, submarines

Challenges

- Power, Cooling
- Limited Space
- Rapid/Remote Deployment, Zero Touch
- Ongoing operations/monitoring

Wherever You Want

On Premise

On Transportation

Cell Sites

Networks Optimized for Edge Computing

SWaP - Size, Weight, and Power Optimized for Micro Data Centers

- 2 Switches in 1RU
- Ultra Low Power <90 watts
- **Highly Scalable Data Center Interconnect (DCI)** \checkmark
- **Zero Packet Loss & Low Latency** \checkmark
- **RoCE optimized switches for NVMe-oF & Machine Learning**
- **Zero Touch Provisioning** \checkmark
- **Network Visibility & Telemetry** \checkmark
- **Cost optimized**

Protocols vs Telemetry

Legacy Mindset

Protocols Telemetry Features

Webscale Mindset

One Unifying Feature: Telemetry

Histograms – a Tool for Analysis

They are not just for shopping online

In Band Telemetry

- In-band advanced notifications
 - Monitor network, Detect anomalies
 - IP/TCP/GENEVE/VXLAN options
 - Notify about
 - Switch ID
 - Egress port
 - Egress queue
 - Queuing bytes
 - Queuing latency
 - Time stamp
- Passive in-band telemetry
 - DSCP coloring according to ingress time
 - Count drops on specific flows across fabric
 - Monitor end-to-end high-latency

Thank You

