

March 20-21 2018SUMMIT San Jose, CA

OPEN. FOR BUSINESS.

Data Analysis of Manufacturing Test Results for DRAM Module Wiwynn/Ted Pang ted_pang@wiwynn.com

What Wiwynn Does?

Test Software

Optimize parameters of tests Optimize pass criteria Failure analysis

Labs

Better design for good MTBF

Solid domain knowledge and experiences + data scientists

Failure Rates with Different DIMM Sizes 3 Million DIMMs

		M1	M2	
32GB	Test Qty	1M-2M	0.1M-0.5M	0.1M-0.5
	Failure rate	0.12%	0.15%	0.06
16GB	Test Qty	0.1M-0.5M	N/A	<0.1
	Failure rate	0.07%	N/A	80.0
8GB	Test Qty	0.1M-0.5M	0.1M-0.5M	0.1M-0.5
	Failure rate	0.06%	0.07%	0.05

F2	F3	F4	F
ΟΟΚ	>50K	>50K	>100

0.14% 0.05%

Failure Rates with Hard Disks **Over 2million Hard Disks**

D1

Test Qty	0.5M-1M
Failure rate	0.07%

Reliability Engineering of DIMMs Great impact and difficult to control in production test:

- Difficult to define the golden testing time
- To define the error threshold in the testing time is an open problem
- Require several testing to confirm the defect DIMM modules.

C P MMIT

The Stress Test Process for DIMMs Software

- Run utility to test DIMMs and save logs to SEL (system event log) if any ECC error occurred.
- STRESSAPPTEST version 1.0.3_autoconf, 64 bit binary, Resource: opensource.google.com

Testing Model Variables and Criteria

- (SEL)
- Testing Time: t_d (ex. 12 hours)
- Correctable ECC error threshold: E_{max} (ex. 6)
- Not Defect DIMM
 - No uncorrectable ECC errors
 - Less than E_{max} errors in total testing time t_d

- Check error-correcting code (ECC) errors in system events log

Data Observation Dataset

- period
- **Preliminary Observation of DIMMs Quality**
- At least one ECC error occurred in testing

- We test over 80K DIMMs installed on 10K systems in a limit time

Data Observation Time Distribution of The First ECC Error First ECC Error time The First ECC Error -0.005

The x axis is the normalized time and the y axis is the count of DIMMs which have their first ECC error occur at that time.

800

-0.004

- 0.003 - 0.00-Meipul

-0.001 Weibull Fitting -0.000

1000

C P MMIT

Data Observation

Dataset

- this analysis.
- At least one ECC error in testing
- In limit testing time data, Weibull distribution could predict the global coverage rate.

 - β: 80% coverage at 311 normalized time point - γ: 90% coverage at 444 normalized time point

— We normalized the total test time in field to 1000 time units for

The Overview of Recurrent ECC Errors

Time segment distribution between 1^{st} ECC and E_{max} th ECC errors (only show < 25 normalized time)

The Error Time Segment Distribution

Error Types: Spike and Sparse The Bucket

We used the average-linkage hierarchical clustering to analyze the error time segment

A big portion of DIMMs reach their E_{max} th ECC error occurrence within 3.5 normalized time after their first ECC error occurrence.

OPEN. FOR BU

SINESS.

SU SU

CP MMIT

Error Types: Spike and Sparse

The Spike Error Type DIMM

ECC error type

Percentage

The Sparse Error Type DIMM

Time

Sparse (>3.5)	Spike (<=3.5)
47.45%	52.55%

C P MMIT

Sparse Assessment

The 1st ECC Error Time Distribution

Weibull Distribution with 1st ECC and E_{max} th Error Event Time Point of the Sparse Type α : 50% coverage, β: 80% coverage, γ: 90% coverage

The *E_{max}*th ECC Error Time Distribution

-0.0030 -0.0025 -0.0020 🕇 -0.0015 -0.0010 Meibull -0.0005

Our Purpose Shorten the testing time but maintain quality the threshold as compensation.

It is straightforward to just cut testing time and raise

However, the benefits of less test time will be offset by less error coverage and increased false alarms.

Nodel Evaluation Variables and Criteria

- Testing Time, ECC Error Threshold: (t_d, E_{max})

Catch Rate

- **False Alarm Rate**

- Defect DIMMs Judged by The Original Criteria (t_d , E_{max}): D_o - Not Defect DIMMs Judged by The Original Criteria (t_d, E_{max}) : N₀

Defect DIMMs Judged by New Criteria and Existed in D₀) / D₀

- (Defect DIMMs Judged by New Criteria and Existed in N_o) / N_o

ECC error Threshold **Three steps analysis** predict.

Analysis of Different Testing Time and

1. Use trained data (80K) for direct data verification 2. Use the Weibull Distribution to predict criteria 3. Use new data (216K) to cross verify the criteria we

Data Observation – Cross Verification Data **Preliminary Observation of DIMMs Quality**

- At least one ECC error in testing (ECC Error Rate)
- (Defect Rate)

Vendors **ECC Error Rate Defect Rate**

- More or equal than E_{max} ECC error in the first stress testing

A	B	C
0.302%	0.302%	0.168%
0.214%	0.23%	0.107%

	Catch	rate
Direct verification data		90%
		80%
Cross verification data		90%
		80%
Prediction based on Weibull		90%
distribution		80%

OPEN. FOR BU

Testing	ECC Error	False
time	threshold	alarm rate
0.75 t _d	0.5 E _{max}	0.016%
0.5 t _d	0.33 E _{max}	0.028%
0.68 t _d	0.5 E _{max}	0.036%
0.51 t _d	0.5 E _{max}	0.025%
0.7 t _d	0.5 E _{max}	NA
0.49 t _d	0.5 E _{max}	NA

C P MMIT

The Cost-response Model

Elements of The Cost-response Model

1. Cost with Catch Rate

- RMA Costs
- Operation Loss for External Customer
- Reputation

2. Cost with False Alarm Rate

Additional MoH of Testing Time

3. MoH of Testing Time

Concusion

Implement predictive analytics by analyzing event effective stress test time for different parts and brands.

and capacity but still keep high quality level.

OPEN. FOR BUSINESS.

With the optimized test process, we can improve cost

logs generated from the manufacturing process. **Reduce the number of required test and find the best**

steror ob Typy - context - active_cbject sirror_ob.select = * nt ("popped")

modifier_ob = bpy-Context-selected_stylette(* erint("Modifier object:" enr(exdifier stream)

#modifier_ob.s

etress stokelect

print("mirror ob",mirror ob) print("modifier_ob",modifier_ob)

t minner modifier on an

minror_mod = modifier_eb.modifiers.new("mirror_mirror","#1808")

Mirror object to sirr mirmer ab minnor_mod.mirror_object

operation -- "HIRROR X

How Do You Benefits from Data Analysis?

Smart Way to Improve Testing Time and Key **Component Quality**

Find out more about the manufacturing test results for DRAM Module

Download Whitepaper

White Paper

http://www.wiwynn.com/usr_files/Wiwynn_Data_An alysis_Whitepaper.pdf

OPEN. FOR BUSINESS.

