

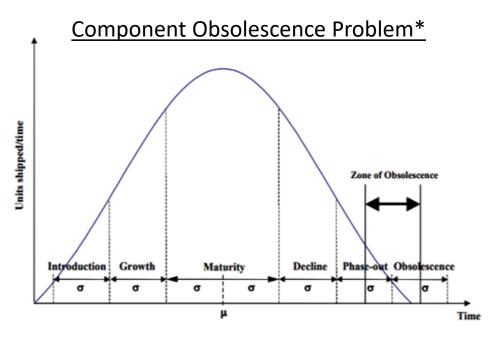
OPEN. FOR BUSINESS.

CINABRO:

a Software Driven, Open Flash Array Architecture for Scalable Cloud Storage Services

Sungjoon Ahn, VP of Engineering, Circuit Blvd., Inc.

OPEN. FOR BUSINESS.

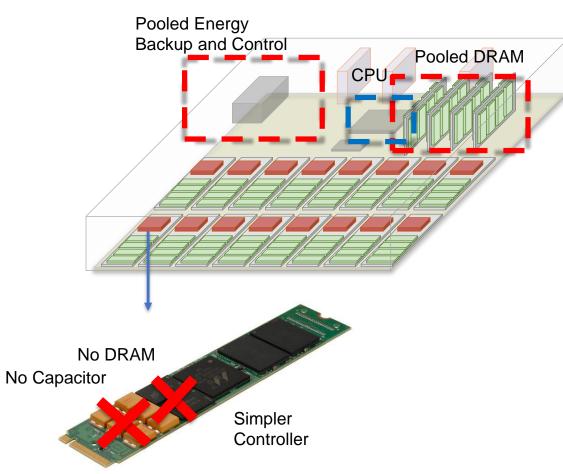

Motivation

1. Serves diverse cloud storage requirements

- Data center workloads are dynamic, diverse and constantly evolving
- Data center SSDs typically run 3 to 5 years after rigorous qualification process
- SSD FW update is expensive and usually limited to critical bug fixing

2. Streamlines flash memory deployments

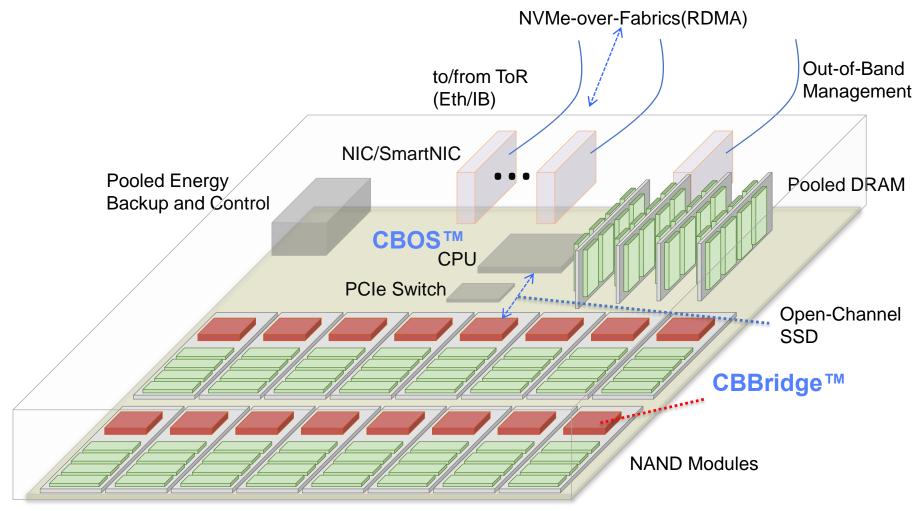
- SSD designs optimized for single self contained units
- Data center SSDs often have old generation NANDs
- Need for deploying latest NANDs in scale



* Source: Electronic Part Life Cycle Concepts and Obsolescence Forecasting, Solomon, Sandborn, and Pecht

Solution

- Lower Total BOM and Simpler SSD Device Architecture
- Large portions of SSD intelligence run on host server CPU



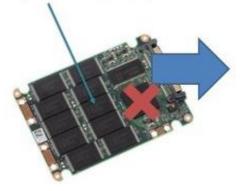
Category	Conventional SSD	Cinabro SSD
1GB DRAM	\$\$	X
1TB NAND	\$\$\$	\$\$\$
SoC Controller	\$\$	\$
Capacitors (x20) – Power Loss Protection	\$	x
Power Consumption	High	Low
Development Complexity	High	Low

Cinabro™ System Architecture

Disaggregated and composable All Flash Array based on COTS server

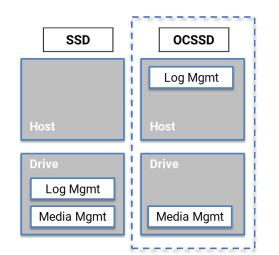
NAND Flash Interface

Host


Data placement

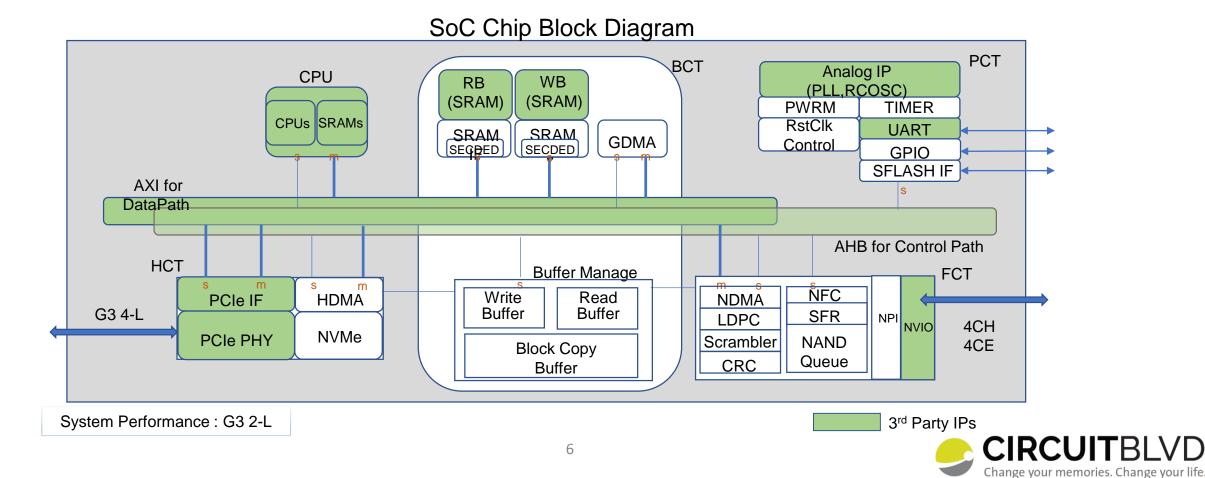
IO Scheduling
Over-provisioning
Garbage collection

Wear levelling

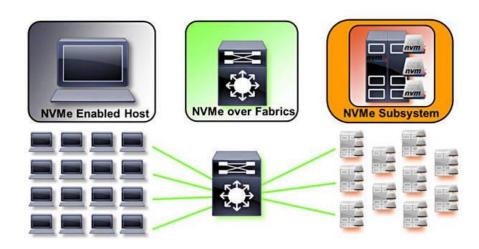

Leverage OCSSD Standard to Provide Optimized Solution with Simpler ASIC

Physical flash exposed to the host (Read, write, erase)

- Standard NVMe based protocol
- Facilitates host FTLs and good fit for cloud providers
- Optimized protocol translation between host and NAND interface


- Performance acceleration and reliability enhancement features for 3D NAND TLC/QLC
- Cost and power efficient ASIC design

CBBridge[™] OCSSD Controller


Simple but robust SoC handling essential NAND media functions

- Open-Channel SSD spec and additional features for cross layer optimizations
- 28nm process technology accommodates 96+ layer 3D toggle3 TLC/QLC NAND with LDPC

Network Interface

Leverage New Standard for Networked Storage Interfaces

- NVMe-over-Fabrics (NVMe-oF)
 - Faster access between hosts and storage systems
 - Much lower latency than iSCSI
- Flexible system design to support various fabrics of NVMe-oF standard (Ethernet, Infiniband, etc.)
- Open architecture allows incorporating new system technologies (e.g. SmartNIC, FPGA acceleration, SDN)
- Seamless integration with Open-Channel SSDs

Software Design

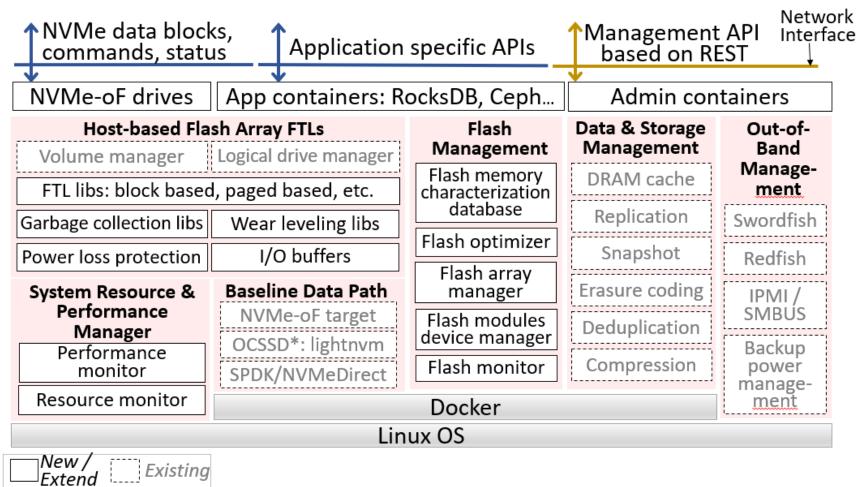
Advanced Open Source Software Optimized for All Flash Array

Latest Open Source SW Solution

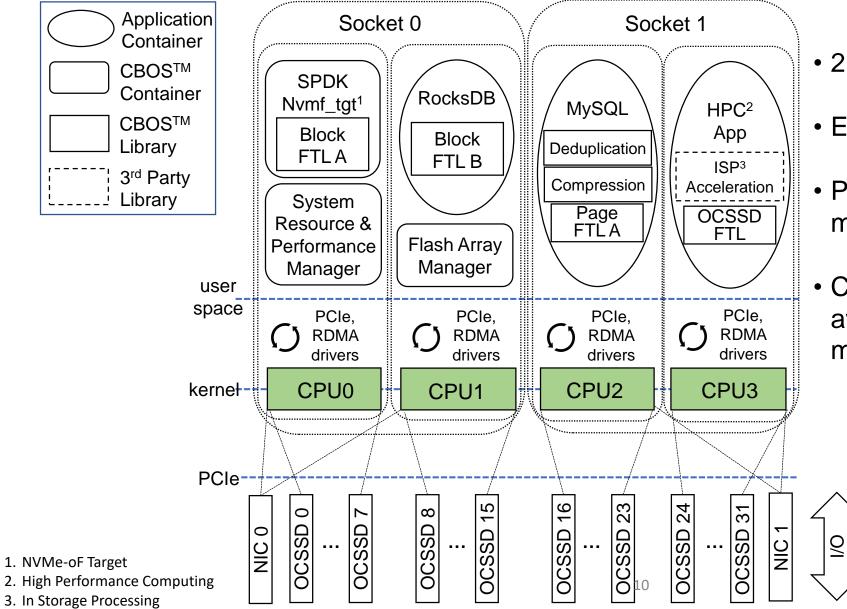
OPENSSD

Linux LightNVM SPDK/DPDK RocksDB OpenStack Ceph Docker Kubernetes

- Host-managed array FTLs
- User-level device driver configurable/adapting to various workload
- Scalable design to manage array of NAND modules


- Leverage multi-core/multi-processor CPU to maximize parallelism
- Data center friendly orchestration utilizing Linux Containers and Kubernetes Ready design

CBOS™ Software Architecture

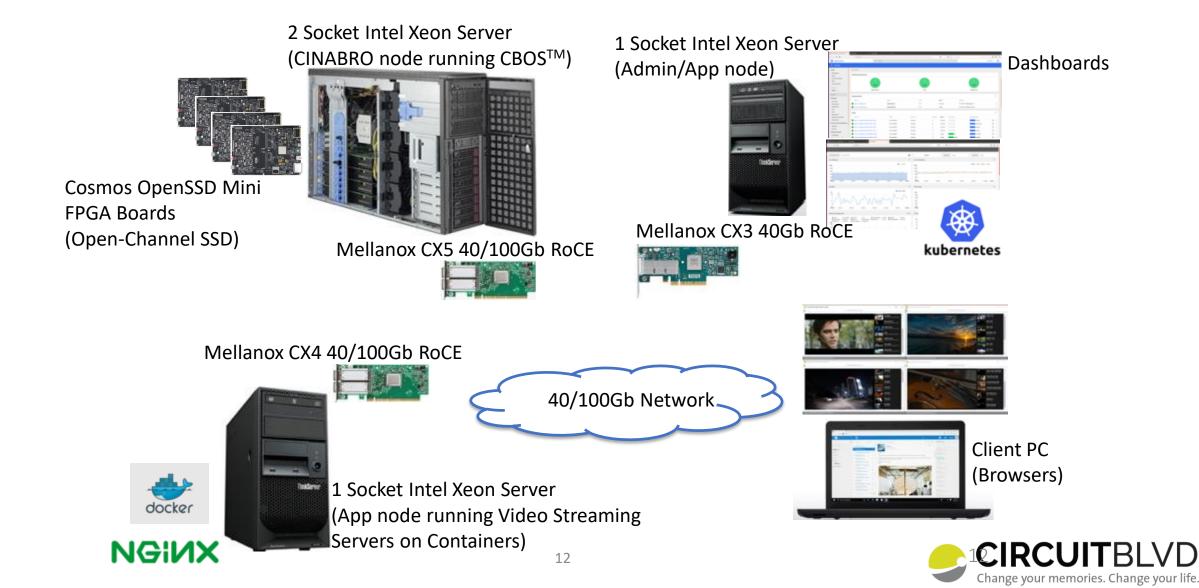

Container based storage and application software modules

• Host based Flash Array FTLs come with libraries that apps can pick and choose

CBOS™ Container Example

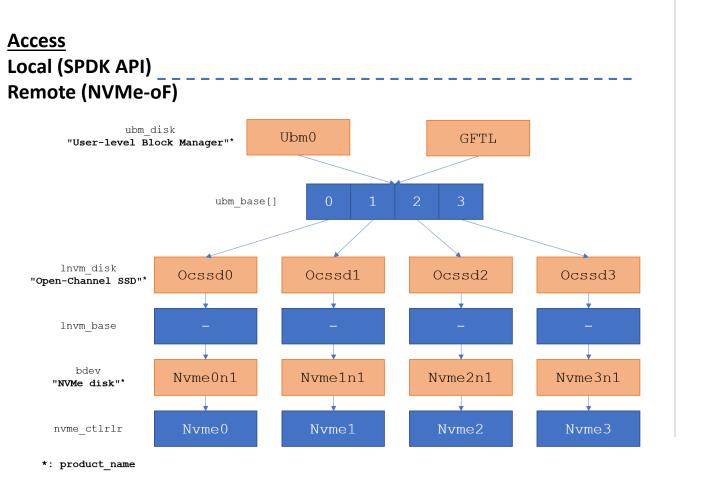
• 2 Socket, 4 Core System

- Each CPU core handles 8 OCSSD
- Per different application needs, matching FTL container is deployed
- CBOS storage containers run on available CPU cores executing managerial tasks



Development Milestones

	Phase I (-Dec. '17)	Phase II (-Dec. '18)	Phase III (-Dec. '19)
CINABRO™ Appliance	First Working Prototype • Commodity x86 server • x4 Cosmos OpenSSD Mini PCIe cards • Mellanox RDMA network cards	Alpha • Commodity x86 server • x8 Cosmos OpenSSD Ultra PCIe cards • NVMe-oF network cards: TBD	 Beta Customized PCIe fabrics Commodity CPU, DRAM, PCIe BMC: ready; Backup power: TBD
CBBridge™	FPGA1 • FPGA code with OCSSD compliant FW • 16nm 2D MLC NAND w/ BCH	 FPGA2 • RTL release: CBBridge[™] SoC ready. Runs on FPGA • 64L 3D TLC NAND w/ LDPC 	ASIC • SoC tape-out (mid '19) • 96L 3D TLC/QLC NAND w/ LDPC
CBOS™	 Prototype release NVMe-oF drive interface Baseline data path working: OCSSD pblk / lightnvm, NVMe-oF, SPDK/DPDK 	 <u>Alpha release</u> Host-based flash array FTLs Storage management layer Application plugins System resource & performance manager design complete 	Beta release• Core feature complete• OpenStack compliant• Data management beta• System resource & performance Manager beta• Out-of-Band management beta
Open Source	 SPDK contribution Functions to help writing OCSSD access from user level Included in SPDK v17.10, v18.01 	 <u>R&D version alpha</u> OpenSSD FPGA RTL codes v1.2 Developer edition CBOS[™] alpha: includes device drivers, user level libraries, and pilot apps 	R&D version beta • OpenSSD FPGA RTL codes v1.3 • Developer edition CBOS [™] beta



Current Prototype Multiple FPGA based OCSSDs running in our lab

Prototype FTL Evaluations

Our 1st host FTLs, UBM and GFTL^{*}, have been implemented in SPDK.

- (1) Array with up to 4 units of FPGA OCSSDs
 - : showing reasonable performance for FPGA based SSDs
- (2) Array with up to 24 units of OCSSD Qemu-nvme emulators
 - : used for qualitative test of multiple applications
 - : 24 copies of GFTL working correctly over same number of emulated OCSSDs

* GFTL is based on Hanyang University's Greedy FTL.

Prototype Applications

End-to-end integration tests with multiple applications

Containerized Video Server	Containerized RocksDB	SK telecom's AF Ceph
 OCSSD arrays host movie files and are exposed via SPDK nvmf_tgt containers Video servers run inside containers, made of Nginx web server with RTMP module 	 Containerized RocksDB, both local and remote (over NVMe-oF) Local: SPDK's RocksDB plugin over CBOS[™] GFTL Remote: SPDK's nvmf-tgt over CBOS[™] GFTL 	 All Flash Ceph is flash optimized version of Ceph. Initial data verification test over 4 FPGA OCSSDs ran successfully.
<complex-block><complex-block><complex-block></complex-block></complex-block></complex-block>	SPORSE STORAGE PERFORMANCE DEVELOPMENT KIT	VM with 4OCSSD NVMf target KVM KVM KVM Application QEMU KVM Client Ceph OSD 4 OCSSD
[8 concurrent video server example]	[24 RocksDB plugin per CPU core example]	[AF Ceph over 4 OCSSDs example]

Summary

Solution Benefits

- Flexibility to accommodate NAND generations from various vendors
- Adaptable to various Cloud Data Center network infrastructure
- Customizable SW architecture to meet ever-evolving cloud data center requirements

Communities

- OpenSSD, OCSSD, SPDK: Our work has been integrated
- OCP: open to collaboration about making our hardware design available to the community

Resources

- OpenSSD FPGA SSD available at: <u>http://openssd.io</u>
- SPDK OCSSD contributed codes: https://github.com/spdk/spdk.git (SPDK v17.10, v18.01)
- CBOS[™] development edition codes: TBD

DCP SUMMT