
1

D E N A L I
T H E N E X T - G E N E R A T I O N

H I G H - D E N S I T Y S T O R A G E

I N T E R F A C E

Laura Caulfield
Senior Software Engineer

Arie van der Hoeven
Principal Program Manager

3

Microsoft

Outline

• Technology Trends & Application Requirements

• Proof-of-Concept

• Host-Drive Specification

4

Microsoft

Outline

• Technology Trends & Application Requirements

• Proof-of-Concept

• Host-Drive Specification

5

Microsoft

Design Principles For Cloud Hardware

• Support a broad set of applications on shared hardware
Azure (>600 services), Bing, Exchange, O365, others

• Scale requires vendor neutrality & supply chain diversity
Azure operates in 38 regions globally, more than any other cloud provider

• Rapid enablement of new generations
New NAND every 18 months, hours to precondition, hundreds of workloads

• Flexible enough for software to evolve faster than hardware
SSDs rated for 3-5 years, heavy process for FW update, software updated daily

6

Microsoft

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 4 16 64 256 1,024

W
ri

te
 A

m
p

lif
ic

at
io

n
 F

ac
to

r
(W

A
F)

IO Size (MB)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 4 16 64 256 1,024

W
ri

te
 A

m
p

lif
ic

at
io

n
 F

ac
to

r
(W

A
F)

IO Size (MB)

A1-960GB

B1-480GB

C1-480GB

D1-480GB

D2-480GB

E1-480GB

E1-960GB

E2-480GB

Attribute Size

Flash Page 16kB

Flash Block 4MB - 9MB

Map Granularity 4kB

SSD Architecture

Address Map Data Cache Attribute Size

Flash Page 16kB

Flash Block 4MB - 9MB

4kB Writes

Flash Page

Flash Block

NAND Flash

Expectation…
X

Enough data to
fill a page

Garbage Collection:
1. Copy valid data

(Write Amplification)
2. Erase Block

1 GB

7

Microsoft

Attribute Size

Flash Page 16kB

Flash Block 4MB - 9MB

Map Granularity 4kB

Attribute Size

Flash Page 16kB 1MB

Flash Block 4MB - 9MB 1GB

Map Granularity 4kB

… …

SSD Architecture

Address Map Data Cache

NAND Flash

…

1MB Writes

…
B

lo
ck

 S
iz

e
(M

B
)

Die Capacity (Gbit) -- Log Scale

Enough data to
fill a striped page

8

Microsoft

………

…

……

Cloud-Scale Workloads

What is the most efficient placement of their data in an SSD’s NAND Flash Array?

…

…

…

Application in Virtual Machine (VM)

• Small updates
• Unaligned Peak Traffic (Bursty)

Azure Storage Backend (SOSP ‘11)

• Lowest tier in hierarchy (“streaming”)

• Write Perf. ↑, Stream Count ↑
• Read QoS via small reclaim unit

Horizontal Stripe
• Each write receives peak performance
• Erase blocks when VM closes

Allow these and other stripe dimensions simultaneously in the same SSD

Vertical Stripe
• High throughput through aggregation
• Smallest possible effective block size

… …

…

New Application in VM
• Same resources as any VM guest
• Adaptable to flash sizes

Hybrid Stripe
• VM Host allocates horizontal stripe
• VM Guest partitions it further

9

Microsoft

Outline

• Technology Trends & Application Requirements

• Proof-of-Concept

• Host-Drive Specification

10

Microsoft

Denali SSD Architecture

Terminology

Open Channel SSD:
Drive exposes physical addresses such as channels

Denali SSD:
Drive exposes logical hierarchy of addresses that map to physical attributes

FTL (Flash Translation Layer):
Algorithms which allow SSD to replace conventional HDDs

Log Manager:
Receives random writes
Transmits one or more streams of sequential writes
Maintains address map, performs garbage collection

Media Manager:
Written for a specific generation of media
Implements error correction such as ECC, RAID and read-retry
Prevents errors through scrubbing, mapping out bad blocks, etc.

Evolution of the Architecture

FTL

Log Mgmt.

Media Mgmt.

Log Mgmt.

Media Mgmt.

Host

Drive

Log Mgmt.

Media Mgmt.

Denali SSD

Host

Drive

Standard SSD

Host

Drive

Open Channel SSD

Production Ready
OCSSD 2.0

Prototype
OCSSD 1.2

FTL

Log Mgmt.

Media Mgmt.

FTL

Log Mgmt.

Media Mgmt.

11

Microsoft

POC Test Configuration

✓ POC Goal
Migrate FTL

to Azure’s kernel

12

Microsoft

0

1

2

3

4

5

6

Conventional
SSD

Open Channel
SSD

Write Amplification Factor

Host

Drive

End-to-End

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Conventional
SSD

Open Channel
SSD

Memory
(GB per TB of Flash)

Results: Optimizing System’s Overheads

✓ POC Goal
Quantify opportunity

for optimization of
resources

FW-based algorithms overheads are static, the host has information and flexibility to reduce them dynamically

Write Amplification (4k Random Writes)
• Better end-to-end WAF – logic in FTL library is efficient
• Optimize host-side WAF using workload information

Memory
• 1GB of DRAM / TB of flash for address map
• Optimize map: sparse, granularity, dynamic allocation

CPU
• Implementation Specific Overheads in prototype
• Further optimization through end-to-end WAF reductions

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Conventional
SSD

Open Channel
SSD

CPU
(Cores/Drive)

O
p

ti
m

iz
e

O
p

ti
m

iz
e

O
p

ti
m

iz
e

O
p

t

13

Microsoft

Results: Performance Parity

• Workloads:
– Seq: 4 threads, QD 32, 128kB
– Mix: 4 threads, QD 4, 4kB
– Rand: 4 threads, QD 32, 4kB, 70/30

• Read Perf.: Top in Class

• Write Perf.: Pending Typical Optimizations

• Workload:
– Measured: 4kB random reads, QD 1
– Background: 256kB random writes

• Top-in-class
H

ig
h

er
 is

 b
et

te
r

✓ POC Goal
Remain competitive with

conventional SSDs’ performance

Lo
w

er
 is

 b
et

te
r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Random
Mix

Random
Reads

Random
Writes

Sequential
Reads

Sequential
Writes

Throughput

Standard SSD (Avg.)

Open Channel SSD

Standard SSD 1

Standard SSD 2

Standard SSD 3

0.01

0.1

1

10

100

R
ea

d
 L

at
e

n
cy

 (
m

s)

Read Latency
(Random Writes in Background) Avg. Latency

2-nines %-ile

3-nines %-ile

4-nines %-ile

5-nines %-ile

Max Latency

14

Microsoft

Outline

• Technology Trends & Application Requirements

• Proof-of-Concept

• Host-Drive Specification

“Open-Channel Solid State Drives NVMe Specification” Matias Bjørling, Oct 2016 https://aka.ms/i9my03

https://aka.ms/i9my03

15

Microsoft

Logical Hierarchical Addressing

• Each field maps to logical part of architecture
– Flexibility in HW to manage NAND

(such as mapping out bad blocks)

– System can implement 2-part wear leveling*

– Overheads significantly lower than conventional SSDs

• Host IO Requirements
– Allocate a fresh a chunk before writing any sectors

– Write sectors within the chunk sequentially

– Some new elements to abstract NAND management,
for example, the cache minimum write size

Address Format:
MSB LSB

Group Parallel Unit Chunk Sector

Group: SSD Channel
Parallel Unit (PU): NAND Die
Chunk: multi-plane block
Sector: 512B or 4k region of NAND page

* “FlashBlox: Achieving Both Performance Isolation and Uniform Lifetime for Virtualized SSDs” Huang et al, USENIX-FAST 2017

16

Microsoft

LSB MSB1 MSB2

NAND Cell

N 10 14 18

N + 1 13 17 21

N + 2 16 20 24

N + 3 19 23 27

N + 4 22 26 30

N + 5 25 29 33

LSB MSB1 MSB2

NAND Cell

N 10 14 18

N + 1 13 17 21

N + 2 16 20 24

N + 3 19 23 27

N + 4 22 26 30

N + 5 25 29 33

LSB MSB1 MSB2

NAND Cell

N 10 14 18

N + 1 13 17 21

N + 2 16 20 24

N + 3 19 23 27

N + 4 22 26 30

N + 5 25 29 33

Cache Minimum Write Size (CMWS)

• Open NAND cells susceptible to read disturb

• Example: Cache the last 3-5 pages written to any write point

• Host-Device Contract:
– CMWS = max kB in open cells

– CMWS = 0kB if drive caches to mitigate the effect

– Host queries for CMWS

– Drive fails reads to CMWS region

“Vulnerabilities in MLC NAND Flash Memory Programming.” Yu Cai et al. HPCA 2017

LSB MSB1 MSB2

NAND Cell

N 10 14 18

N + 1 13 17 21

N + 2 16 20 24

N + 3 19 23 27

N + 4 22 26 30

N + 5 25 29 33

Written page in fully-written cell

Written page in partly-written cell

Next page to write

Unwritten page

Defining a logical abstraction for an idiosyncrasy of NAND flash physics

17

Microsoft

Reliability and QoS

• RAID and isolation are at odds
(Small tenant == high RAID overheads)

• Mechanism must enable spectrum of users

– Many tenants use cross server replication, don’t require RAID

– Some require standard reliability

• Solution: IO Determinism’s Read Recovery Levels

This is the same challenge that the IO Determinism community is working to solve.

18

Microsoft

Conclusions

• Let’s architect the new storage interface for the long term
– Correct division of responsibilities between Host and SSD
– Control to define heterogeneous block stripes
– HyperScale: Hundreds or thousands of workers per TB

• Successful proof-of-concept
– System overheads: as expected & ready for optimization
– Performance parity on standard microbenchmarks
– Next step: complete interface for warrantable Open-Channel SSD

• Final solution must include expertise from community
– Currently working through the division between host and SSD
– Contact us to discuss
– Read more in our FAST 2017 paper: FlashBlox

20

Microsoft

References

• Azure Storage Backend (SOSP ‘11)
Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency

• FlashBlox (FAST ‘17)
FlashBlox: Achieving Both Performance Isolation and Uniform Lifetime for Virtualized SSDs

• LightNVM (FAST ‘17)
LightNVM: The Linux Open-Channel SSD Subsystem

• Read Determinism (SDC ‘16)
Standards for improving SSD performance and endurance

• Software-Defined Flash (ASPLOS ‘14)
SDF: Software-Defined Flash for Web-Scale Internet Storage Systems

• Multi-Streamed SSD (HotStor ‘14)
The Multi-streamed Solid-State Drive

• De-Indirection (FAST ‘12)
De-Indirection for Flash-based SSDs with Nameless Writes

• Programmable Flash (ADMS ‘11)
Fast, Energy Efficient Scan inside Flash Memory SSDs

http://sigops.org/sosp/sosp11/current/2011-Cascais/printable/11-calder.pdf
https://www.usenix.org/conference/fast17/technical-sessions/presentation/huang
https://www.usenix.org/system/files/conference/fast17/fast17-bjorling.pdf
http://www.snia.org/sites/default/files/SDC/2016/presentations/hyperscalers/Bill_Martin_Standards_for_Improving_SSD_Performance_and_Endurance.pdf
http://www.ece.eng.wayne.edu/~sjiang/pubs/papers/ouyang14-SDF.pdf
https://www.usenix.org/system/files/conference/hotstorage14/hotstorage14-paper-kang.pdf
https://www.usenix.org/system/files/conference/fast12/zhang2-7-12.pdf
http://www.adms-conf.org/p36-KIM.pdf

