

OPEN. FOR BUSINESS.

DENALI The Next-Generation High-Density Storage Interface

Laura Caulfield Senior Software Engineer

Arie van der Hoeven Principal Program Manager

OPEN. FOR BUSINESS.

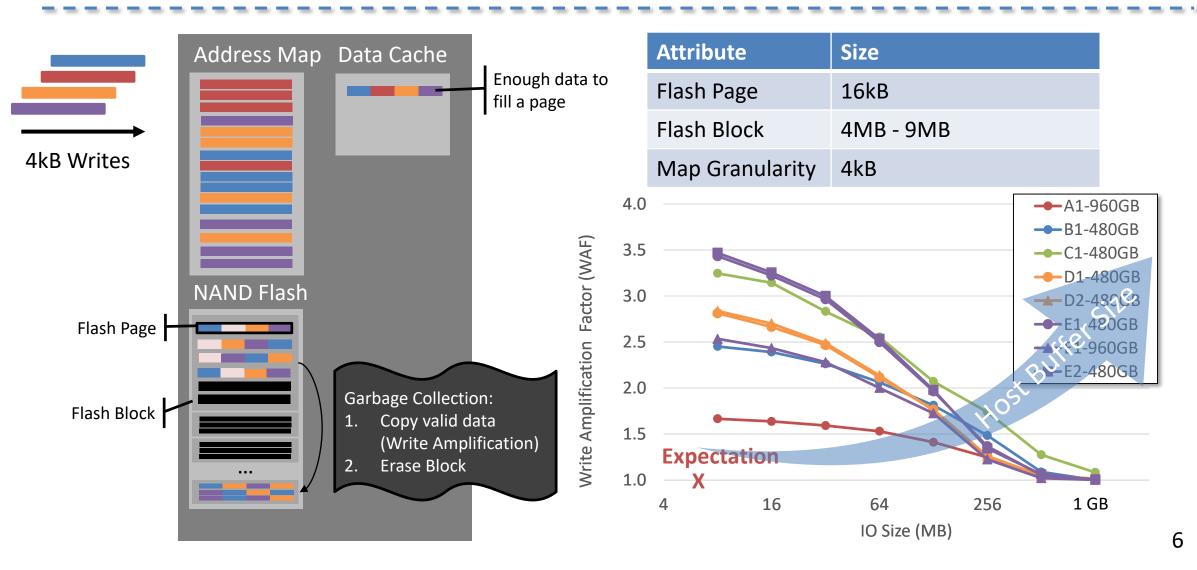
• Technology Trends & Application Requirements

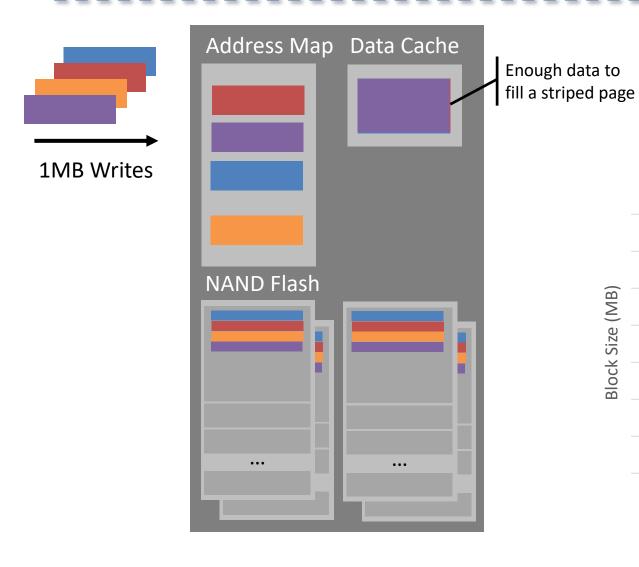
Proof-of-Concept

• Host-Drive Specification

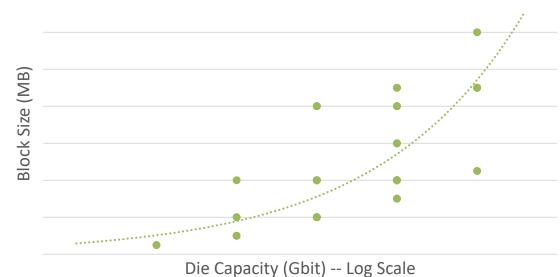
• Technology Trends & Application Requirements

• Proof-of-Concept


Host-Drive Specification


Design Principles For Cloud Hardware

- Support a broad set of applications on shared hardware Azure (>600 services), Bing, Exchange, O365, others
- Scale requires vendor neutrality & supply chain diversity Azure operates in 38 regions globally, more than any other cloud provider
- Rapid enablement of new generations New NAND every 18 months, hours to precondition, hundreds of workloads
- Flexible enough for software to evolve faster than hardware SSDs rated for 3-5 years, heavy process for FW update, software updated daily


SSD Architecture

SSD Architecture

Attribute	Size
Flash Page	16kB 1MB
Flash Block	4 MB - 9MB 1GB
Map Granularity	4kB

Cloud-Scale Workloads

What is the most efficient placement of their data in an SSD's NAND Flash Array?

Azure Storage Backend (SOSP '11)

- Lowest tier in hierarchy ("streaming")
- Write Perf. 个, Stream Count 个
- Read QoS via small reclaim unit

Application in Virtual Machine (VM)

- Small updates
- Unaligned Peak Traffic (Bursty)

New Application in VM

- Same resources as any VM guest
- Adaptable to flash sizes

	_
—	

Vertical Stripe

- High throughput through aggregation
- Smallest possible effective block size

Horizontal Stripe

- Each write receives peak performance
- Erase blocks when VM closes

Hybrid Stripe

- VM Host allocates horizontal stripe
- VM Guest partitions it further

• Technology Trends & Application Requirements

• Proof-of-Concept

Host-Drive Specification

Denali SSD Architecture

Terminology

Open Channel SSD: Drive exposes physical addresses such as channels

Denali SSD:

Drive exposes logical hierarchy of addresses that map to physical attributes

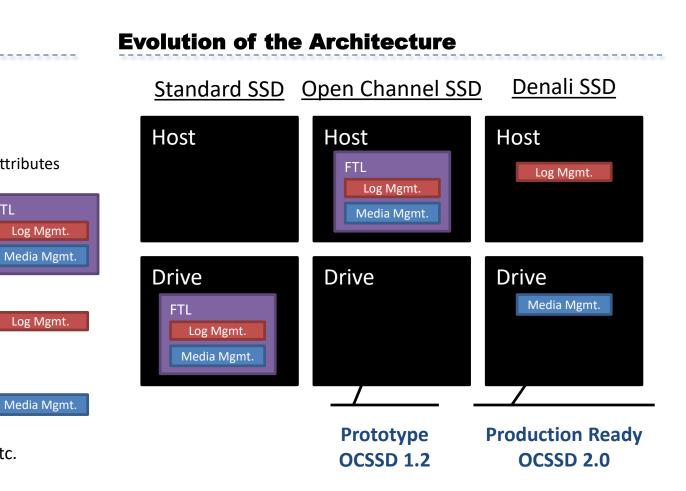
FTL

Log Mgmt.

Log Mgmt.

FTL (Flash Translation Layer):

Algorithms which allow SSD to replace conventional HDDs

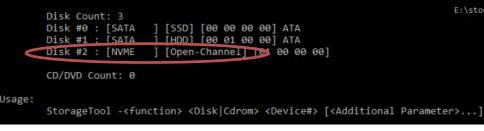

Log Manager:

Receives random writes

Transmits one or more streams of sequential writes Maintains address map, performs garbage collection

Media Manager:

Media Mgmt. Written for a specific generation of media Implements error correction such as ECC, RAID and read-retry Prevents errors through scrubbing, mapping out bad blocks, etc.


✓ POC Goal

Migrate FTL to Azure's kernel

POC Test Configuration

Volume Layout Type File System Status Capacity Free Spa % Free Simple Basic Healthy (R 450 MB 450 MB 100 % Simple Basic Healthy (R 100 MB 100 % 2016 (Cc) Simple Basic NTFS Healthy (B 145.93 GB 133.49 GB 91 % atat (E) Simple Basic NTFS Healthy (P 154.16 GB 147.99 GB 96 % New Volume Simple Basic NTFS Healthy (P 146.48 GB 146.38 GB 100 % StorScore Test Dri Simple Basic NTFS Healthy (P 87.283 GB 1.00 GB 0 %	1					
2016 (C.) Simple Basic NTFS Healthy (B 145.93 GB 133.49 GB 91 % data (E.) Simple Basic NTFS Healthy (P 154.16 GB 147.99 GB 96 % New Volume Simple Basic NTFS Healthy (P 146.48 GB 146.38 GB 96 %						
 data (E) Simple Basic NTFS Healthy (P 154.16 GB 147.99 GB 96 % New Volume Simple Basic NTFS Healthy (P 146.48 GB 146.38 GB 100 % 						
New Volume Simple Basic NTFS Healthy (P 146.48 GB 146.38 GB 100 %						
➡ StorScore Test Dri Simple Basic NTFS Healthy (P 872.83 GB 1.00 GB 0 %						
ananan disensi disensi dan karana						
Online Healthy (Rec Healthy Healthy (Boot, Crash Dump Healthy (Primary Partition) Healthy (Pri	nary Partition)					
- Disk 1						
Basic StorScore Test Drive (D:)	872.83 GB NTFS					
872.83 GB 872.83 GB NTFS						

C:\Users\Administrator\Desktop>StorageTool-reman.exe

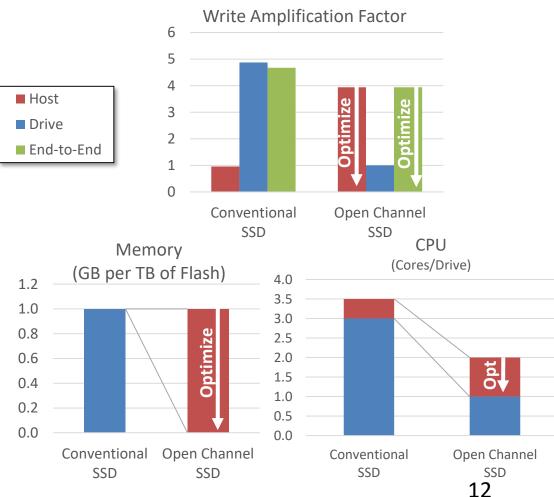
Collecting SMART counters. Collecting system power via IPMI. Collecting system power via IPMI. Testing... 1/16: Purging 2/16: Initializing: 100.0% [506.0 MB/s] 3/16: Preconditioning: achieved steady-state after 600 seconds 4/16: 4K, rnd, 100% read, 0% wri, QD= 1 01:13:05 PM -5/16: Purging 6/16: Initializing: 100.0% [481.0 MB/s] 7/16: Preconditioning: assumed steady-state after 456653824 IOs 8/16: 4K, rnd, 0% read, 100% wri, QD= 1 11:36:55 PM -9/16: Purging 01:13:05 PM -> 02:14:05 PM 11:36:55 PM -> 12:37:55 AM 9/16: Purging 10/16: Initializing: 100.0% [155.0 MB/s] 11/16: Preconditioning: assumed steady-state after 14267360 IOs 12/16: 128K, seq, 100% read, 0% wri, QD= 32 04:20:33 AM 04:20:33 AM -> 05:21:33 AM 12/16: Purging 13/16: Purging 14/16: Initializing: 100.0% [275.0 MB/s] 15/16: Preconditioning: achieved steady-state after 3520 seconds 16/16: 128K, seq. 0% read, 100% wri, QD= 32 08:02:39 AM 08:02:39 AM -> 09:03:39 AM Done (took 20.96 hours)

E:\storscore>

Results: Optimizing System's Overheads

FW-based algorithms overheads are static, the host has information and flexibility to reduce them dynamically

Write Amplification (4k Random Writes)


- Better end-to-end WAF logic in FTL library is efficient
- Optimize host-side WAF using workload information

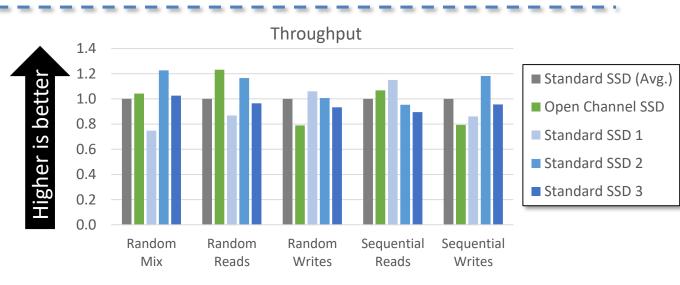
Memory

- 1GB of DRAM / TB of flash for address map
- Optimize map: sparse, granularity, dynamic allocation

CPU

- Implementation Specific Overheads in prototype
- Further optimization through end-to-end WAF reductions

Microsoft ✓ POC Goal Quantify opportunity for optimization of resources


✓ POC Goal

Remain competitive with conventional SSDs' performance

Results: Performance Parity

- Workloads:
 - Seq: 4 threads, QD 32, 128kB
 - Mix: 4 threads, QD 4, 4kB
 - Rand: 4 threads, QD 32, 4kB, 70/30
- Read Perf.: Top in Class
- Write Perf.: Pending Typical Optimizations

- Workload:
 - Measured: 4kB random reads, QD 1
 - Background: 256kB random writes
- Top-in-class

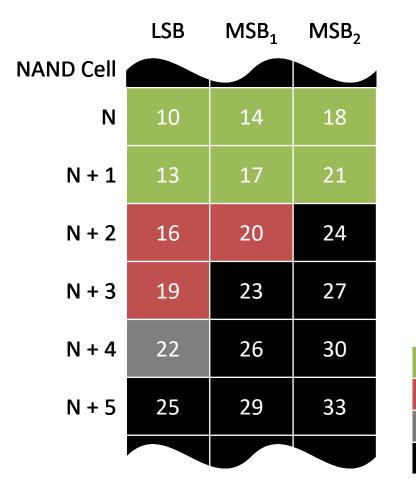
• Technology Trends & Application Requirements

Proof-of-Concept

• Host-Drive Specification

Logical Hierarchical Addressing

- Each field maps to logical part of architecture
 - Flexibility in HW to manage NAND (such as mapping out bad blocks)
 - System can implement 2-part wear leveling*
 - Overheads significantly lower than conventional SSDs
- Host IO Requirements
 - Allocate a fresh a chunk before writing any sectors
 - Write sectors within the chunk sequentially
 - Some new elements to abstract NAND management, for example, the cache minimum write size


MSB			
Group	Parallel Unit	Chunk	Sector

Group: SSD Channel Parallel Unit (PU): NAND Die Chunk: multi-plane block Sector: 512B or 4k region of NAND page

^{* &}quot;FlashBlox: Achieving Both Performance Isolation and Uniform Lifetime for Virtualized SSDs" Huang et al, USENIX-FAST 2017

Cache Minimum Write Size (CMWS)

Defining a logical abstraction for an idiosyncrasy of NAND flash physics

- Open NAND cells susceptible to read disturb
- Example: Cache the last 3-5 pages written to any write point
- Host-Device Contract:
 - CMWS = max kB in open cells
 - CMWS = 0kB if drive caches to mitigate the effect
 - Host queries for CMWS
 - Drive fails reads to CMWS region

Written page in fully-written cell Written page in partly-written cell Next page to write Unwritten page

"Vulnerabilities in MLC NAND Flash Memory Programming." Yu Cai et al. HPCA 2017

Reliability and QoS

This is the same challenge that the IO Determinism community is working to solve.

• RAID and isolation are at odds

(Small tenant == high RAID overheads)

- Mechanism must enable spectrum of users
 - Many tenants use cross server replication, don't require RAID
 - Some require standard reliability

• Solution: IO Determinism's Read Recovery Levels

Conclusions

- Let's architect the new storage interface for the long term
 - Correct division of responsibilities between Host and SSD
 - Control to define heterogeneous block stripes
 - HyperScale: Hundreds or thousands of workers per TB
- Successful proof-of-concept
 - System overheads: as expected & ready for optimization
 - Performance parity on standard microbenchmarks
 - Next step: complete interface for warrantable Open-Channel SSD
- Final solution must include expertise from community
 - Currently working through the division between host and SSD
 - Contact us to discuss
 - Read more in our FAST 2017 paper: FlashBlox

DCP SUMMT

References

- Azure Storage Backend (SOSP '11) Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency
- FlashBlox (FAST '17) <u>FlashBlox: Achieving Both Performance Isolation and Uniform Lifetime for Virtualized SSDs</u>
- LightNVM (FAST '17) LightNVM: The Linux Open-Channel SSD Subsystem
- Read Determinism (SDC '16) <u>Standards for improving SSD performance and endurance</u>
- Software-Defined Flash (ASPLOS '14) SDF: Software-Defined Flash for Web-Scale Internet Storage Systems
- Multi-Streamed SSD (HotStor '14)
 <u>The Multi-streamed Solid-State Drive</u>
- De-Indirection (FAST '12)
 De-Indirection for Flash-based SSDs with Nameless Writes
- Programmable Flash (ADMS '11)
 Fast, Energy Efficient Scan inside Flash Memory SSDs