
RDMA over Falcon Transport Specification

Revision 1.0

Date Submitted: 4th April, 2024
Date Approved: TBD

Authors: Prashant Chandra, Google



Open Compute Project • RDMA over Falcon Transport Protocol Specification

Table of Contents
1. License 4
2. Compliance with OCP Tenets 4

2.1 Openness 4
2.2 Efficiency 4
2.3 Impact 4
2.4 Scale 5
2.5 Sustainability 5

3. Change Log 6
4. Scope 7
5. Overview 7
6. Protocol Architecture 7

6.1 Protocol Layers 7
6.2 Ordering Modes 8
6.3 Error Handling Modes 8
6.4 Supported Operations 8
6.5 Flow Control 9
6.6 Mapping RDMA QP Types to Falcon Connections 10

6.6.1 RC Queue Pairs 10
6.6.2 XRC Queue Pairs 10
6.6.3 UD Queue Pairs 11

6.7 Op Segmentation and Reassembly 11
6.8 RDMA Falcon Contract 13
6.9 Security 13

7. RDMA Flows 14
7.1 RDMA Read Flow 14
7.2 RDMA Write Flow 15

8. Wire Protocol 16
8.1 Packet Format 17

8.1.1 Transport Mode 17
8.1.2 Tunnel Mode 18
8.1.3 RDMA Packet Types 18

8.2 RDMA Base Transport Header (RBTH) 20
8.3 RDMA Extended Transport Headers 21

8.3.1 RDMA Extended Transport Header (RETH) 22

Date: 4 APRIL 2024 Page 2



Open Compute Project • RDMA over Falcon Transport Protocol Specification

8.3.2 Sequence Number Extended Transport Header (SETH) 22
8.3.3 Offset Extended Transport Header (OETH) 23
8.3.4 Sink Tag Extended Transport Header (STETH) 24
8.3.5 Immediate Extended Transport Header (ImmDt) 25
8.3.6 Atomic Extended Transport Header (AtomicETH) 25
8.3.7 Atomic Acknowledgement Extended Transport Header (AtomicAckETH) 26
8.3.8 Invalidate Extended Transport Header (IETH) 27
8.3.9 XRC Extended Transport Header (XRCETH) 27
8.3.10 Datagram Extended Transport Header (DETH) 28

Date: 4 APRIL 2024 Page 3



1. License
Contributions to this Specification are made under the terms and conditions set forth in Open
Web Foundation Contributor License Agreement (“OWF CLA 1.0”) (“Contribution License”) by:

Google

Usage of this Specification is governed by the terms and conditions set forth in the Open Web
Foundation Final Specification Agreement (“OWFa 1.0”).

2. Compliance with OCP Tenets

2.1 Openness
The specification complies with the tenet of Openness by empowering the Community with
Google’s production learnings to help modernize Ethernet. This includes leveraging
production-proven technologies at scale including Carousel, Snap, Swift, Protective Load
Balancing, and Congestion Signaling (CSIG) that have been openly published previously.

2.2 Efficiency
The specification complies with the tenet of Efficiency. Falcon achieves high performance by
combining three key insights that achieve low latency in high-bandwidth, yet lossy, standard
Ethernet data center networks. Fine-grained hardware-assisted round-trip time (RTT)
measurements with flexible, per-flow hardware-enforced traffic shaping, and fast and accurate
packet retransmissions, are combined with multipath-capable and PSP-encrypted Falcon
connections. On top of this foundation, Falcon has been designed from the ground up as a
multi-protocol transport capable of supporting Upper Layer Protocols (ULPs) with widely varying
performance requirements and application semantics. The ULP mapping layer not only provides
out-of-the-box compatibility with Infiniband™ Verbs RDMA and NVMeⓇ ULPs, but also includes
additional innovations critical for warehouse-scale applications such as flexible ordering
semantics and graceful error handling. Last but not least, the hardware and software are
co-designed to work together to help achieve the desired attributes of high message rate, low
latency, and high bandwidth, while maintaining flexibility for programmability and continued
innovation.

2.3 Impact
The specification complies with the tenet of Impact by introducing a new technology that helps
the industry modernize Ethernet. Falcon provides a helpful solution to address demanding
workloads that have high burst bandwidth, high Operations per second, and low latency in

Date: 4 APRIL 2024 Page 4

https://research.google/pubs/pub46460/
https://research.google/pubs/pub48630/
https://research.google/pubs/pub49448/
https://research.google/pubs/pub52149/
https://research.google/pubs/pub52149/
https://datatracker.ietf.org/doc/html/draft-ravi-ippm-csig-00


massive scale AI/ML training, High Performance Computing, and real-time analytics.

2.4 Scale
The specification complies with the tenet of Scale by being designed from the ground up to
deliver high bandwidth and low latency in high-bandwidth, yet lossy, Ethernet data center
networks. Additionally, Falcon is composed of production-proven technologies delivered at scale
including Carousel, Snap, Swift, Protective Load Balancing, and Congestion Signaling (CSIG).

2.5 Sustainability
The specification complies with the tenet of Sustainability by delivering an efficient Ethernet
transport technology that minimizes retransmissions and other wasted effort and energy within
an Ethernet network. Additionally, the technology allows a wide range of high performance
workloads to be run on standard Ethernet networks.

Date: 4 APRIL 2024 Page 5

https://research.google/pubs/pub46460/
https://research.google/pubs/pub48630/
https://research.google/pubs/pub49448/
https://research.google/pubs/pub52149/
https://datatracker.ietf.org/doc/html/draft-ravi-ippm-csig-00


3. Change Log

Date Version # Author Description

14 FEB 2024 0.9 Prashant Chandra Defines the RDMA
over Falcon transport
protocol

4 APRIL 2024 1.0 Arjun Singhvi Changes for clarity

Date: 4 APRIL 2024 Page 6



4. Scope

This specification describes the mapping of the RDMA ULP to the Falcon transport protocol
including packet formats, supported operations and error handling modes.

Not in scope are:
● Details of Falcon protocol.
● Details of applications’ use of RDMA or Falcon.
● Details of implementing RDMA/Falcon in software stacks or hardware NICs.

5. Overview
This specification describes the mapping of the RDMA ULP to the Falcon transport protocol
including packet formats, supported operations and error handling modes. The RDMA ULP is
defined by the Infiniband Verbs specification and the mapping of RDMA over the Falcon
transport supports the Reliable Connection (RC) and Unreliable Datagram (UD) modes of the
Verbs specification.

6. Protocol Architecture

6.1 Protocol Layers

The figure above shows the protocol layering of RDMA as an upper layer protocol on top of
Falcon. Falcon itself is composed of two sublayers: transaction sublayer and the packet
delivery sublayer. The transaction sublayer primarily deals with ULP transactions and is
responsible for resource allocation and transaction ordering. The packet delivery sublayer
primarily deals with network packets and is responsible for reliable delivery and congestion
control.

Date: 4 APRIL 2024 Page 7



The RDMA-over-Falcon layer defines the mapping of RDMA commands and completions to
Falcon packets and the wire-protocol used to communicate between RDMA-over-Falcon peers.

6.2 Ordering Modes
RDMA-over-Falcon supports three ordering modes:

● Strongly ordered mode: This mode is equivalent to the Infiniband Verbs ordering model
and requires in-order data placement and in-order completions.

● Weakly ordered mode: This mode is based on the iWarp ordering model and supports
out-of-order data placement with in-order completions.

● Unordered mode: This mode supports out-of-order data placement with out-of-order
completions.

The mapping of RDMA ordering modes to Falcon ordering modes are described in the table
below:

RDMA Ordering Mode Falcon Ordering Mode

Strongly Ordered Queue Pair Ordered Connection

Weakly Ordered Queue Pair Unordered Connection

Unordered Queue Pair Unordered Connection

6.3 Error Handling Modes
RDMA-over-Falcon defines two error handling modes:

● Verbs compatible mode: In this mode, the error handling is conformant to the model
defined by the Infiniband Specification. Errors are typically reported out-of-band via
Asynchronous Events (AEs) and many errors are typically fatal to a QP.

● Complete-in-error mode: In this mode, errors are reported in-band via regular
completions and results in the errored operation failing while the QP continues to
operate.

6.4 Supported Operations
RDMA-over-Falcon supports all of the RDMA opcodes as defined in the Infiniband Specification
in the strongly ordered mode with Verbs compatible error handling mode. However, there are
some constraints when using other ordering and error handling mode combinations. The

Date: 4 APRIL 2024 Page 8



supported operations are described in the table below. Like in Infiniband, UD Op sizes are
limited to 1 MTU.

Ordering
Mode

QP
Type

Completion
Ordering

Data
Ordering Error Semantics Read/Write

Size Limits
Send Size
Limit

Strongly
Ordered RC Strictly

in-order
Strictly
in-order Configurable Any Size Any Size

Strongly
Ordered UD Strictly

in-order
Strictly
in-order Configurable N/A 1 MTU

Weakly
Ordered RC Strictly

in-order
Out-of-
order Configurable Any Size Any Size

Weakly
Ordered UD Strictly

in-order
Out-of-
order Configurable N/A 1 MTU

Unordered RC Out-of-order Out-of-
order Complete-in-Error

Any Size
(except Write
with Immediate
data)

1MTU

Unordered UD Out-of-order Out-of-
order Complete-in-Error N/A 1 MTU

6.5 Flow Control
RDMA-over-Falcon must implement the credit based flow control between Falcon and ULP as
described in the ULP Resource Management section of the Falcon Protocol Specification. The
credit-based flow control can be used to limit the use of Falcon resources by individual RDMA
QPs. Flow control can also be used at a coarser grain to control resource consumption at a
SR-IOV VF level or a PF level.

In addition to the credit based flow control, an implementation may choose to implement a
global Xon/Xoff signal at the interface between RDMA and Falcon. In such a case, the
implementation must ensure that the assertion of the Xoff signal does not block Read
Responses from being sent from RDMA to Falcon. This is required for protocol deadlock
avoidance.

Date: 4 APRIL 2024 Page 9



6.6 Mapping RDMA QP Types to Falcon Connections
The mapping between RDMA QPs and Falcon connections depends on the QP type and is
described in the following sections. A pair of connection IDs (CIDs) one for each direction of the
data flow identifies each Falcon connection. The mapping between a RDMA QP and a Falcon
connection defines how the CID is determined for Send Queue (SQ) operations.

6.6.1 RC Queue Pairs

For reliable connection (RC) queue pairs, there is a 1:1 association between a QP and a Falcon
connection as shown in the figure above. The mapping is specified by storing the associated
CID in the QP context of the RC QP as shown above.

6.6.2 XRC Queue Pairs

For extended reliable connection (XRC) queue pairs, there is a 1:1 association between a XRC
initiator (INI) QP and a Falcon connection as shown in the figure above. The mapping is
specified by storing the associated CID in the QP context of the XRC INI QP as shown above.

Date: 4 APRIL 2024 Page 10



We note that XRC versus RC differences do not impact RDMA-over-Falcon ULP mapping.
These differences are taken care of in RDMA ULP as described in the Infiniband specification.

6.6.3 UD Queue Pairs

For unreliable datagram (UD) queue pairs, the association between QPs and connections can
be many-to-many (or M:N). The above figure shows an example of a 2:2 mapping where 2 UD
QPs are mapped to 2 Falcon connections. Send operations on a UD QP can target multiple
destinations (and hence multiple Falcon connections). For UD QPs, the mapping to a Falcon
connection is specified by storing the CID in the Address Handle (AH) object associated with the
send operation as shown in the above figure.

6.7 Op Segmentation and Reassembly
Falcon transactions can be at most MTU-sized. Therefore, the RDMA-over-Falcon layer is
responsible for segmenting large Verbs operations posted by software into MTU-sized Falcon
transactions and aggregate individual completions received from Falcon into the op-level
completion back to software. This segmentation and reassembly is only required for RC queue
pairs since all UD operations are limited to 1 MTU per the Infiniband specification.

Date: 4 APRIL 2024 Page 11



The above figure shows an example of the segmentation of a multi-MTU SEND operation. The
RDMA-over-Falcon layer breaks up the large SEND operation into 4 push transactions. The
SEND first and SEND middle operations are MTU-sized push transactions. The SEND last
operation can be less than or equal to a MTU-sized push transaction. Each push transaction
generated by the RDMA-over-Falcon layer contains the RDMA base header (RBTH) along with
the Sequence Number Extended Transport Header (SETH) and the Offset Extended Transport
Header (OETH). The information contained in the SETH and OETH headers allows for
out-of-order data placement at the target in the weakly ordered mode.

The above figure shows an example of the segmentation of a multi-MTU WRITE operation. The
RDMA-over-Falcon layer breaks up the large WRITE operation into 4 push transactions. The
WRITE first and WRITE middle operations are MTU-sized push transactions. The WRITE last
operation can be less than or equal to a MTU-sized push transaction. Each push transaction
generated by the RDMA-over-Falcon layer contains the RDMA base header (RBTH) along with
the RDMA Extended Transport Header (RETH). The RETH is included in each push request so
that the target can place the incoming data out-of-order to support both the weakly ordered
mode and the unordered mode.

The above figure shows an example of the segmentation of a multi-MTU READ operation.
Unlike multi-MTU SEND and WRITE operations, the segmentation of a multi-MTU READ
operation must take into account the scatter-gather list (SGL) specified in the Read WQE to

Date: 4 APRIL 2024 Page 12



place the read response. The Infiniband specification allows an SGL list to contain multiple
fragments each with its own L-Key. To support the unordered mode of operation, the
RDMA-over-Falcon layer must break up a large READ operation into multiple pull transactions
based on both the MTU size and the fragment boundaries. A pull transaction must not be larger
than an MTU and must also not cross fragment boundaries.
In the above example, the large READ operation is segmented into 6 pull transactions. Unlike
the WRITE and SEND case, the READ first and READ middle transactions can be smaller than
an MTU due to the constraint that fragment boundaries cannot be crossed. Each pull
transaction generated by the RDMA-over-Falcon layer contains the RDMA base header (RBTH)
along with the RDMA Extended Transport Header (RETH), Sequence Number Extended
Transport Header (SETH) and the Sink Tag Extended Transport Header (STETH). The RETH is
included in each pull request so that the target can read the data out-of-order to support both
the weakly ordered mode and the unordered mode. The information contained in the SETH and
OETH headers allows for out-of-order data placement of the read response at the initiator in the
weakly ordered and unordered modes.

6.8 RDMA Falcon Contract
The RDMA-over-Falcon layer assumes the following requirements that all implementations of
the Falcon transport must meet:

1. The Falcon implementation must deliver a packet at most once to the RDMA ULP. All
packet retransmissions and loss-recovery must be handled within the Falcon transport
and must be transparent to the RDMA ULP. If Falcon is unable to deliver a packet for
whatever reason, an error must be reported to the RDMA ULP which may be signaled to
software as a connection tear-down event.

2. The Falcon implementation must complete a push or pull transaction at most once to the
RDMA ULP.

3. In the strongly ordered mode, Falcon must deliver packets and completions to the RDMA
ULP in strict order. The Falcon implementation is expected to reorder packets and
completions as necessary to maintain ordering in this mode.

4. The Infiniband Invariant Cyclic Redundancy Check (ICRC) is not supported and the
RDMA ULP does not perform ICRC checks on Falcon packets delivered to the ULP.

5. The RDMA ULP does not implement any congestion control mechanisms. Congestion
control is expected to be fully implemented within the Falcon transport.

6.9 Security
In addition to the basic security mechanisms provided within the Falcon transport
(authentication, encryption and replay protection), the RDMA-over-Falcon layer implements
additional security checks for reliable connection (RC) queue pairs to prevent a compromised

Date: 4 APRIL 2024 Page 13



host from spoofing traffic. These security checks are:

● On receiving a packet from Falcon, the RDMA ULP must check the Falcon connection ID
(CID) in the received packet against the CID stored in the QP context associated with
that CID.

● If the CID does not match for a request (pull or push), the RDMA ULP must return a
NACK CID response back to Falcon. This NACK CID response must not stop
processing on the queue pair since the connection associated with the queue pair is
different than that indicated by the CID in the incoming packet.

● If the CID does not match for a response (push completion or pull response), the
response must be dropped and no NACK indication must be provided to Falcon.

These checks prevent an attacker from using an existing Falcon connection to deliver data to an
incorrect QP that may belong to a different application or Virtual Machine.

7. RDMA Flows

The following sections describe the RDMA operation flow between the initiator and the target.

7.1 RDMA Read Flow

Date: 4 APRIL 2024 Page 14



The life of a RDMA Read transaction is shown in the figure above. The connection is assumed
to be an ordered connection. The following sequence of operations are performed at the
initiator and target sides:

1. Software posts a RDMA read request to a send queue. This results in the RDMA
protocol engine issuing two pull requests to Falcon. The two pull requests are created
because each pull request is limited to one MTU in length and the original read request
is larger than one MTU.

2. The initiator creates two pull request packets (with RSN=1 and RSN=2) and transmits
them to the target. The packet delivery sublayer assigns PSN=100 and PSN=101 to the
two pull request packets.

3. The two pull request packets are reordered by the network and arrive out of order at the
target. The target reorders the two pull requests by RSN and delivers them to the RDMA
engine. The target also triggers the generation of the ACK packet acknowledging the
receipt of the two pull request packets. In the figure above, a single coalesced ACK is
sent from the target to the initiator.

4. The RDMA block performs the memory read operation for each pull request and returns
pull responses to the target.

5. The target creates two pull data packets and transmits them to the initiator. The packet
delivery sublayer assigns PSN=200 and PSN=201 to the pull responses.

6. The initiator receives the two pull data packets and creates pull responses back to the
RDMA block. The initiator also triggers the generation of ACK packets by the packet
delivery sublayer acknowledging the receipt of the pull data packets.

7. After the RDMA block at the initiator receives both pull responses, the RDMA block
creates a read completion and posts the completion to the completion queue.

7.2 RDMA Write Flow

Date: 4 APRIL 2024 Page 15



The life of a RDMA Write transaction is shown in the figure above. The connection is assumed
to be an ordered connection. The following sequence of operations are performed at the
initiator and target sides:

1. Software posts a RDMA write request to a send queue. This results in the RDMA
protocol engine issuing two push requests to Falcon. The two push requests are created
because each push request is limited to one MTU in length and the original write request
is larger than one MTU.

2. The initiator creates two push data packets (with RSN=1 and RSN=2) and transmits
them to the target. The packet delivery sublayer assigns PSN=300 and PSN=301 to the
two push data packets.

3. The two push data packets are reordered by the network and arrive out of order at the
target. The target reorders the two push data packets by RSN and delivers them to the
RDMA engine.

4. The RDMA block performs the memory write operation for each push request and
returns push completions to Falcon. After receiving the push completions, the target
Falcon triggers the generation of the ACK packet acknowledging the receipt of the two
push data packets. In the figure above, a single coalesced ACK is sent from the target to
the initiator.

5. Upon receiving the ACK for the push data packets, the initiator delivers two push
completions back to the RDMA block.

6. After the RDMA block at the initiator receives both push completions, the RDMA block
creates a write completion and posts the completion to the completion queue.

8. Wire Protocol

This RDMA-over-Falcon wire protocol defines the messages exchanged between the initiator
and target systems to support RDMA operations and completions. The RDMA-over-Falcon wire
protocol leverages Falcon for reliable transfer of messages across the network and can use the
strictly ordered mode or the unordered mode of Falcon.

Date: 4 APRIL 2024 Page 16



The high-level protocol exchange between the RDMA initiator and target is shown in the figure
above.

8.1 Packet Format
The packet format used by RDMA-over-Falcon is shown in the figure below. RDMA packets are
encapsulated within the payload of a Falcon packet. RDMA defines multiple packet types for
communication between the initiator and target that are listed in the table below and are
described in detail in subsequent sections.

8.1.1 Transport Mode

Date: 4 APRIL 2024 Page 17



8.1.2 Tunnel Mode

8.1.3 RDMA Packet Types

RDMA Opcode RDMA
Packet
Type

RDMA
Packet
Source

Falcon
Packet
Type

RDMA Headers Present
[7:5] [4:0]

000 00000 SEND First Initiator Push
Request RBTH, SETH, OETH

000 00001 SEND
Middle Initiator Push

Request RBTH, SETH, OETH

000 00010 SEND Last Initiator Push
Request RBTH, SETH, OETH

000 00011
Send Last

with
Immediate

Initiator Push
Request RBTH, SETH, OETH, ImmDt

000 00100 SEND Only Initiator Push
Request RBTH, SETH, OETH

000 00101
SEND Only

with
Immediate

Initiator Push
Request RBTH, SETH, OETH, ImmDt

000 00110 WRITE
First Initiator Push

Request RBTH, RETH

000 00111 WRITE
Middle Initiator Push

Request RBTH, RETH

000 01000 WRITE
Last Initiator Push

Request RBTH, RETH

Date: 4 APRIL 2024 Page 18



RDMA Opcode RDMA
Packet
Type

RDMA
Packet
Source

Falcon
Packet
Type

RDMA Headers Present
[7:5] [4:0]

000 01001
WRITE

Last with
Immediate

Initiator Push
Request RBTH, RETH, SETH, ImmDt

000 01010 WRITE
Only Initiator Push

Request RBTH, RETH

000 01011
WRITE

Only with
Immediate

Initiator Push
Request RBTH, RETH, SETH, ImmDt

000 01100 READ
Request Initiator Pull

Request RBTH, RETH, SETH, STETH

000 01101
READ

Response
First

Target Pull Data RBTH, STETH

000 01110
READ

Response
Middle

Target Pull Data RBTH, STETH

000 01111
READ

Response
Last

Target Pull Data RBTH, STETH

000 10000
READ

Response
Only

Target Pull Data RBTH, STETH

000 10001 Reserved

000 10010 ATOMIC
Response Target Pull Data RBTH, AtomicETH, STETH

000 10011 ATOMIC
CmpSwap Initiator Pull

Request
RBTH, AtomicAckETH, SETH,
STETH

000 10100 ATOMIC
FetchAdd Initiator Pull

Request
RBTH, AtomicAckETH, SETH,
STETH

000 10101 Reserved

Date: 4 APRIL 2024 Page 19



RDMA Opcode RDMA
Packet
Type

RDMA
Packet
Source

Falcon
Packet
Type

RDMA Headers Present
[7:5] [4:0]

000 10110
SEND Last

with
Invalidate

Initiator Push
Request RBTH, SETH, OETH, IETH

000 10111
SEND Only

with
Invalidate

Initiator Push
Request RBTH, SETH, OETH, IETH

000 11000-1
1111 Reserved

011 00000-0
0011 Reserved

011 00100 SEND Only Initiator Push
Request RBTH, DETH

011 00101
SEND Only

with
Immediate

Initiator Push
Request RBTH, DETH, ImmDt

011 00110-1
11111 Reserved

8.2 RDMA Base Transport Header (RBTH)

The RDMA base transport header (RBTH) must be present in every RDMA-over-Falcon packet.
The format of the RBTH is as shown in the figure above. The following table documents the
definition of various fields in the header.

Date: 4 APRIL 2024 Page 20



Field Bit
Width Description

Version 4 This field encodes the version of the RDMA-over-Falcon wire
protocol. The field must be set to 1.

Complete-in-
Error (CE) 1

This bit must be set to 1 in the Last or Only packet of a message
to indicate that the message must be completed in error on the
initiator or target side.

Pad 2 This field encodes the pad bytes inserted to align the message to
a 4 byte boundary.

AckReq (A) 1 This bit must be set to 1 to request an explicit acknowledgement
from the target for this packet.

Reserved (R) 1 This field must be encoded as 0.

Solicited Event
(SE) 1

This bit must be set by the initiator to indicate that the target shall
invoke the CQ event handler. The rules for setting this bit are the
same as those defined in the Infiniband Specification.

Opcode 8

This field specifies the RDMA operation and follows the same
encoding as the RoCEv2 / Infiniband specifications. The mapping
of RDMA opcodes to Falcon packet types is shown in the table
here.

Destination QP 24 This field specifies the destination QP number.

Sequence
Number (SN) 32

This field encodes a monotonically increasing sequence number.
The first packet sent on a Falcon connection must be sent with
SN = 1. SN is used to check that packets are delivered in order in
strongly ordered mode and to detect missing packets in weakly
ordered mode. RDMA Response packets must have the same
SN as the corresponding RDMA Request packet.

8.3 RDMA Extended Transport Headers
RDMA-over-Falcon uses multiple extended transport headers that are defined in the following
sections. The sequence of extended transport headers included in a RDMA-over-Falcon packet
depends on the RDMA operation and is documented in the table here.

Date: 4 APRIL 2024 Page 21



8.3.1 RDMA Extended Transport Header (RETH)

The RDMA extended transport header (RETH) is used in RDMA Read and RDMA Write
operations and has the same format as defined in the Infiniband Specification (shown in the
figure above). The following table describes the various fields in the header. The authoritative
definition of the fields and the rules for encoding them are provided by the Infiniband
Specification.

Field Bit
Width Description

Virtual Address
(VA) 64

This field encodes the starting virtual address of the memory
region that is being accessed at the target by the RDMA Read or
Write operation. The VA can start on any byte boundary.

R-Key 32 This field encodes the memory region key provided by the target
to the initiator and is used by the target for access control.

Length 32 This field encodes the length in bytes of the RDMA Read or Write
operation.

8.3.2 Sequence Number Extended Transport Header (SETH)

Date: 4 APRIL 2024 Page 22



The Sequence number extended transport header (SETH) is used to support out-of-order data
placement in the weakly-ordered mode and has the format as shown in the figure above. The
following table describes the various fields in the header.

Field Bit
Width Description

Request
Message
Sequence
Number
(RMSN)

32

This field encodes a message sequence number that is assigned
as follows:

● The initial value of RMSN must be set to 1.
● For outbound Send Immediate or Write Immediate

operations, this field encodes (in the lower 8 bits) the
index of the RQ WQE being consumed at the target. The
value of RMSN must be incremented by 1 after the initiator
transmits the last / only packet of an outbound Send or
Write with Immediate data.

● For outbound Read or Atomic operations, the RMSN must
be incremented by 1 for every Read or Atomic request
packet. The RMSN encodes the index of the IRRQ entry
at the responder that is used to store the Read or Atomic
request.

● The initiator must maintain separate RMSN counters for
Send/Write and Read/Atomic operations.

8.3.3 Offset Extended Transport Header (OETH)

The offset extended transport header (OETH) is used to support out-of-order data placement in
the weakly-ordered mode and has the format as shown in the figure above. The following table
describes the various fields in the header.

Date: 4 APRIL 2024 Page 23



Field Bit
Width Description

Message
Offset 32

This field encodes the byte offset into the message of the first
byte of the Send packet. For out-of-order data placement, the
target seeks into the relevant RQ WQE’s (identified by SETH)
scatter/gather list to place the packet bytes in the target buffer.

8.3.4 Sink Tag Extended Transport Header (STETH)

The Sink Tag extended transport header (STETH) is used to support out-of-order data
placement of Read Response data at the initiator and has the format as shown in the figure
above. The following table describes the various fields in the header.

Field Bit
Width Description

Virtual Address
(VA) 64 This field encodes the virtual address of the initiator’s sink buffer

for the first byte of the read response data.

L-Key 32 This field encodes the memory region L-Key associated with the
initiator’s sink buffer.

The STETH is inserted into a Read Request packet by the initiator and must be returned by the
target in the corresponding Read Response packet.

Date: 4 APRIL 2024 Page 24



8.3.5 Immediate Extended Transport Header (ImmDt)

The Immediate extended transport header (ImmDt) is used in RDMA Send with Immediate and
RDMA Write with Immediate operations and has the same format as defined in the Infiniband
Specification (shown in the figure above). The following table describes the various fields in the
header. The authoritative definition of the fields and the rules for encoding them are provided by
the Infiniband Specification.

Field Bit
Width Description

Immediate
Data 32 This field encodes the 32-bit immediate data that must be placed

in the completion queue entry by the target.

8.3.6 Atomic Extended Transport Header (AtomicETH)

The Atomic extended transport header (AtomicETH) is used in RDMA Atomic request packets
and has the same format as defined in the Infiniband Specification (shown in the figure above).

Date: 4 APRIL 2024 Page 25



The following table describes the various fields in the header. The authoritative definition of the
fields and the rules for encoding them are provided by the Infiniband Specification.

Field Width Description

Virtual Address
(VA) 64

This field encodes the starting virtual address of the memory
region that is being accessed at the target by the RDMA Read or
Write operation. The VA can start on any byte boundary.

R-Key 32 This field encodes the memory region key provided by the target
to the initiator and is used by the target for access control.

Swap / Add
Data 64

In a CmpSwap operation this field is swapped into the addressed
buffer if the Compare Data matches the existing buffer contents.
In a FetchAdd operation this field is added to the contents of the
addressed buffer.

Compare Data 64 The data operand used in Compare portion of the CmpSwap
operation.

8.3.7 Atomic Acknowledgement Extended Transport Header (AtomicAckETH)

The Atomic Acknowledged extended transport header (AtomicAckETH) is used in RDMA Atomic
response packets and has the same format as defined in the Infiniband Specification (shown in
the figure above). The following table describes the various fields in the header. The
authoritative definition of the fields and the rules for encoding them are provided by the
Infiniband Specification.

Field Bit
Width Description

Original Data 64 The data result from an Atomic operation. This field encodes the
original value at the address specified in the Atomic request.

Date: 4 APRIL 2024 Page 26



8.3.8 Invalidate Extended Transport Header (IETH)

The Invalidate extended transport header (IETH) is used in RDMA Send with Invalidate
operations and has the same format as defined in the Infiniband Specification (shown in the
figure above). The following table describes the various fields in the header. The authoritative
definition of the fields and the rules for encoding them are provided by the Infiniband
Specification.

Field Bit
Width Description

R-Key 32
This R-Key is used by the target to invalidate a memory region or
memory window once the target receives and executes the SEND
with Invalidate request.

8.3.9 XRC Extended Transport Header (XRCETH)

The XRC extended transport header (XRCETH) is used in all request packets sent by the
initiator that implements the XRC transport service and has the same format as defined in the
Infiniband Specification (shown in the figure above). The following table describes the various
fields in the header. The authoritative definition of the fields and the rules for encoding them are
provided by the Infiniband Specification.

Field Bit
Width Description

XRCSRQ 24 This field encodes the XRC shared receive queue number to be
used by the target for this packet.

Date: 4 APRIL 2024 Page 27



8.3.10 Datagram Extended Transport Header (DETH)

The Datagram extended transport header (DETH) is used in RDMA Send operations on
Unreliable Datagram (UD) queue pairs and has the same format as defined in the Infiniband
Specification (shown in the figure above). The following table describes the various fields in the
header. The authoritative definition of the fields and the rules for encoding them are provided by
the Infiniband Specification.

Field Bit
Width Description

Queue Key 32 This field is required to authorize access to the destination queue.
The target compares this field with the destination’s QP Q_Key.

Source QP 24 This field specifies the source queue pair (QP) identifier. This is
used as the destination QP for response packets.

Date: 4 APRIL 2024 Page 28


