

Usage Guide and Requirements for
OpenRMC Northbound API
Revision 1.1.0, Version 0.6

Participants: Intel (John Leung), Intel (Roksana Mojarad), Meta (Han Wang)

May 2023

Table of Contents
1. License .. 4

2. Scope ... 5

3. Requirements .. 5

4. Capabilities ... 5

5. Use Cases .. 7

5.1. Account Management .. 7
5.2. Hardware Inventory .. 8

5.2.1. Obtain inventory information for the rack manager ... 8
5.2.2. Obtain inventory information for each node in the rack ... 8

5.3. Rack Power Status ... 9
5.3.1. Obtain power state of the rack .. 9
5.3.2. Obtain power usage for the rack ... 9

5.4. Rack Power Control .. 10
5.4.1. Set to limit for power usage for the rack ... 10

5.5. PSU Status/Health .. 10
5.5.1. Obtain the status and health of the PSU .. 10

5.6. Node Power Status ... 11
5.6.1. Obtain power state of a node .. 11
5.6.2. Obtain power usage for a node ... 11

5.7. Node Power Control .. 12
5.8. Node Temperature ... 12
5.9. Node Health and Status ... 13

5.9.1. Obtain the status and health of the node ... 13
5.9.2. Status and health of the CPUs ... 14
5.9.3. Status and health of the memory ... 15
5.9.4. Obtain the state of the LED .. 15
5.9.5. Retrieve the RMC log ... 15
5.9.6. Retrieve the System logs ... 16

5.10. Obtain the firmware revision .. 16
5.10.1. Obtain the revision of Rack Manager firmware ... 17
5.10.2. Obtain the revision of the BIOS firmware on each system 17
5.10.3. Obtain the revision of the BMC firmware on each system 17
5.10.4. Obtain the revision of PSU firmware .. 17

5.11. Update Firmware ... 18
5.11.1. Update Firmware on the Rack Manager ... 18
5.11.2. Update Firmware on one or more Nodes .. 19

5.12. Group Operations .. 20
5.12.1. Reset a temporary group of nodes .. 20
5.12.2. Reset a persistent group of nodes .. 21

5.12.3. Create a Persistent Set of Nodes ... 21
5.12.4. Set the Boot Order to their defaults a persistent group of nodes 22

5.13. Authorization between rack manager and manage node ... 22
5.13.1. Get the certificate from each node .. 22
5.13.2. Place a certificate on a managed node .. 22
5.13.3. Place a token on a managed node ... 23
5.13.4. Place a certificate on the rack manager ... 24
5.13.5. Place a token on the rack manager .. 24
5.13.6. Place a manifest on token on rack manager .. 25

6. Security ... 26
6.1. Security Model ... 26

6.1.1. The necessity for tokens and manifests .. 26
6.1.2. Attestation ... 26

6.2. Process for authorization between rack manager and managed node 26
6.3. Definitions ... 26
6.4. Theory of Operations ... 27
6.5. Procedure .. 27

6.5.1. Initial conditions ... 27
6.5.2. Node Discovery .. 27
6.5.3. Node Authentication ... 28
6.5.4. Certificate Revocation Management ... 28

6.6. Flows ... 29
6.6.1. Managed Node starts up (Discovery Flow) .. 29
6.6.2. Manageability Manifest Updated .. 30

6.7. Threat and Risk Model .. 30
6.7.1. Assets .. 30
6.7.2. Adversaries ... 31
6.7.3. Threats ... 31

7. References .. 34

8. Revision .. 35

1. License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License.

NOTWITHSTANDING THE FOREGOING LICENSES, THIS SPECIFICATION IS
PROVIDED BY OCP "AS IS" AND OCP EXPRESSLY DISCLAIMS ANY
WARRANTIES (EXPRESS, IMPLIED, OR OTHERWISE), INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A
PARTICULAR PURPOSE, OR TITLE, RELATED TO THE SPECIFICATION. NOTICE
IS HEREBY GIVEN, THAT OTHER RIGHTS NOT GRANTED AS SET FORTH ABOVE,
INCLUDING WITHOUT LIMITATION, RIGHTS OF THIRD PARTIES WHO DID NOT
EXECUTE THE ABOVE LICENSES, MAY BE IMPLICATED BY THE
IMPLEMENTATION OF OR COMPLIANCE WITH THIS SPECIFICATION. OCP IS
NOT RESPONSIBLE FOR IDENTIFYING RIGHTS FOR WHICH A LICENSE MAY BE
REQUIRED IN ORDER TO IMPLEMENT THIS SPECIFICATION. THE ENTIRE RISK
AS TO IMPLEMENTING OR OTHERWISE USING THE SPECIFICATION IS
ASSUMED BY YOU. IN NO EVENT WILL OCP BE LIABLE TO YOU FOR ANY
MONETARY DAMAGES WITH RESPECT TO ANY CLAIMS RELATED TO, OR
ARISING OUT OF YOUR USE OF THIS SPECIFICATION, INCLUDING BUT NOT
LIMITED TO ANY LIABILITY FOR LOST PROFITS OR ANY CONSEQUENTIAL,
INCIDENTAL, INDIRECT, SPECIAL OR PUNITIVE DAMAGES OF ANY
CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO
THIS SPECIFICATION, WHETHER BASED ON BREACH OF CONTRACT, TORT
(INCLUDING NEGLIGENCE), OR OTHERWISE, AND EVEN IF OCP HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2. Scope
This document references requirements and provide the usage examples for the OpenRMC
northbound API v1.0.0 for a rack management controller.

3. Requirements
As a Redfish-based interface, the required Redfish interface model elements are specified in
a profile document. For the OpenRMC northbound API v1.1.0, the profile is located at –

https://github.com/opencomputeproject/OCP-
Profiles/blob/master/OCPRackManagerController.v1_1_0_WIP.json

The OCPRackManagerController.v1.1.0 profile extends from the
OCPBaselineHardwareManagement.v1.0.1 profile.

https://github.com/opencomputeproject/OCP-
Profiles/blob/master/OCPBaselineHardwareManagement.v1_0_1.json

The Redfish Interop Validator is an open source conformance test which reads the profile,
executes the tests against an implementation and generates a test report – in text or HTML
format.
$> python3 RedfishInteropValidator.py profileName --ip host:port

The Redfish Interop Validator is located at https://github.com/DMTF/Redfish-Interop-
Validator.

4. Capabilities
The OpenRMC API is extended from the OCP Baseline Hardware Management capabilities.
The following table lists those capabilities. The "Usage Guide and Requirements for the
OCP Baseline Hardware Management Profile v1.0.1" document

Table 1 - Baseline Capabilities
Use Case Manageable Capabilities Requirement

Account
Management

• Get accounts Mandatory

Session
Management

• Get sessions Mandatory

Hardware
inventory

• Get the FRU information
• Get and Set the Asset Tag

Mandatory
Recommended

Hardware location • Get the location LED
• Set the location LED

Recommended
Recommended

Status • Get status of chassis Mandatory
Power • Get power state

• Get power usage
• Get power limit

Mandatory
Recommended
Recommended

Temperature • Get the temperature
• Get temperature thresholds

If Impl,
Mandatory
If Impl, Recom

Cooling • Get fan speeds
• Get fan redundancies

If Impl,
Mandatory
If Impl, Recom

Log • Get log entry
• Clear the log

Mandatory
Recommended

Management
Controller

• Get version of firmware for mgmt
controller
• Get status of mgmt controller
• Get network information for mgmt

controller
• Reset the mgmt controller

Mandatory
Mandatory
Mandatory
Mandatory

The following are the usages and capabilities of the OpenRMC interface which are
incremental to the OCP Baseline Hardware Management capabilities. For v1.1, the
following use cases have been added:

• Get the certificate for the node
• Update the firmware on the rack manager
• Update BIOS firmware on the node
• Update BMC firmware on the node
• Create a persistent group
• Reset a persistent group of nodes
• Reset a temporary group of nodes

Table 2 - Rack Management Capabilities
Use Case Manageable Capabilities Requirement
Account Management • Admin/user accounts Mandatory Section 5.1
Hardware inventory • Get the FRU information of the rack manager

• Get the FRU information of the node
Mandatory
Mandatory

Section 5.2.1
Section 5.2.2

Rack Power Status • Obtain the power state of the rack
• Obtain the power usage of the rack

Mandatory
Recommended

Section 5.3.1
Section 5.3.2

Rack Power Control • Set the power usage limit of the rack Mandatory Section 5.4
PSU Status/Health • Obtain the status and health of the PSU Mandatory Section 5.5.1
Node Power Status • Determine the power state of the node

• Obtain the power readings of the node (voltage, current)
Mandatory
Recommended

Section 5.6.1
Section 5.6.2

Node Power Control • Set the power usage limit of the node Recommended

Section 5.7

Node Temperature • Obtain the temperature of the node Mandatory Section 5.8
Node Status/Health • Obtain the status and health of the node

• Status and health of the CPUs
• Status and health of the memory
• Obtain the state of the LED
• Retrieve the rack manager logs
• Retrieve the logs from the node

Mandatory
Mandatory
Mandatory
Mandatory
Mandatory
Mandatory

Section 5.9.1
Section 5.9.2
Section 5.9.3
Section 5.9.4
Section 5.9.5
Section 5.9.6

System Certification • Get the certificate for the node Mandatory Section 5.13.1
Firmware Versions • Obtain the FW revision of rack manager Section 5.10.1

• Obtain the FW revision of BIOS FW of the node
• Obtain the FW revision of BMC FW of the node
• Obtain the FW revision of PSU firmware

Mandatory
Mandatory
If Impl,
Mandatory

Section 5.10.2
Section 5.10.3
Section 5.10.4

Firmware Update • Update the firmware on the rack manager
• Update firmware on one or more nodes

Mandatory
Mandatory

Section 5.11.1
Section 5.11.2

Group operations • Reset a temporary group of nodes
• Reset a persistent group of nodes
• Create a persistent set of nodes
• Set the boot orders to their default on a persistent group

of nodes

Mandatory
Mandatory
Mandatory
Mandatory

Section 5.12.1
Section 5.12.2
Section 5.12.3
Section 5.12.4

Authorized
management
relationship

• Get the certificate from each node
• Place certificate on node
• Place token on node
• Place certificate on rack manager
• Place token on rack manager
• Place manageability manifest on rack manager

Recommended
Recommended
Recommended
Recommended
Recommended
Mandatory

Section 5.13.1
Section 5.13.3
Section 5.13.4
Section 5.13.5
Section 5.13.6
Section
5.13.16

5. Use Cases
This section describes how each capability is accomplished by interacting via the Redfish
Interface.

5.1. Account Management

The Redfish server has an account for each user that uses the Redfish interface.
POST /redfish/v1/AccountService/Accounts/1

The following is an example of an Account resource. The Redfish service has three
mandatory resources in Roles resource collection: Administrator, Operator, ReadOnly.
{
 "@odata.id": "/redfish/v1/AccountService/Accounts/1",
 "Id": "1",
 "Name": "User Account",
 "Enabled": true,
 "Password": null,
 "PasswordChangeRequired": false,
 "UserName": "Administrator",
 "RoleId": "Administrator",
 "Locked": false,
 "Links": {
 "Role": {
 "@odata.id": "/redfish/v1/AccountService/Roles/Administrator"
 }
 }

}

The following is the Role resource for the operator role.
{
 "@odata.id": "/redfish/v1/AccountService/Roles/Operator",
 "Id": "Operator",
 "Name": "User Role",
 "IsPredefined": true,
 "AssignedPrivileges": [
 "Login",
 "ConfigureSelf",
 "ConfigureComponents"
]
}

5.2. Hardware Inventory

The Redfish client obtains the hardware inventory information for the rack and for each
node.
The hardware inventory use case is supported by:
• The ability to obtain inventory information for the rack manager
• The ability to obtain inventory information for the nodes in the rack

5.2.1. Obtain inventory information for the rack manager

The hardware inventory for the rack in obtained from the Chassis resource representing the
rack management hardware.
GET /redfish/v1/Chassis/RackManager

The response contains the hardware inventory properties for manufacturer, model, SKU,
serial number and part number. The AssetTag properties is a client writeable property.
{
 "@odata.type": "#Chassis.v1_2_0.Chassis",
 "@odata.id": "/redfish/v1/Chassis/RackManager",
 "Id": "RackManager",
 . . .
 "ChassisType": "Rack",
 "Name": "Rack Manager Hardware",
 "Manufacturer": "…"
 "Model": "RackScale_Rack",
 "SKU": "…"
 "SerialNumber": "…",
 "PartNumber": "…",
 "AssetTag": null,
}

5.2.2. Obtain inventory information for each node in the rack

The hardware inventory for the rack in obtained from the Chassis resource representing each
node's hardware.
GET /redfish/v1/Chassis/{id}

The response contains the hardware inventory properties for manufacturer, model, SKU,
serial number and part number. The AssetTag properties is a client writeable property.
{
 "@odata.type": "#Chassis.v1_2_0.Chassis",
 "@odata.id": "/redfish/v1/Chassis/Node1",
 "Id": "Node1",
 . . .
 "ChassisType": "Node",
 "Name": "Rack Manager Hardware",
 "Manufacturer": "…"
 "Model": "RackScale_Rack",
 "SKU": "…"
 "SerialNumber": "…",
 "PartNumber": "…",
 "AssetTag": null,
}

5.3. Rack Power Status

In the rack power status use case, the Redfish Client obtains the rack's power state and the
power usage reading.

5.3.1. Obtain power state of the rack

The power state for the rack in obtained from the Chassis resource representing the rack
hardware.
GET /redfish/v1/Chassis/Rack

The response contains the PowerState properties.
{
 "@odata.type": "#Chassis.v1_2_0.Chassis",
 "@odata.id": "/redfish/v1/Chassis/Rack",
 "Id": "Node1",
 . . .
 "ChassisType": "Rack",
 "PowerState": "On"
}

5.3.2. Obtain power usage for the rack

The power usage for the rack is obtained from the Power resource associated with the rack
hardware.
GET /redfish/v1/Chassis/Rack/Power

The response contains the Voltage array properties. The PowerConsumedWatts property
contains the value of instantaneous power usage. The PowerMetrics objects contains
statistics (min, max, avg) power usage over a duration.
{
 "@odata.id": "/redfish/v1/Chassis/Rack/Power",
 "@odata.type": "#Power.v1_1_0.Power",
 "Id": "Power",

 "PowerControl": [{
 "@odata.id": "/redfish/v1/Chassis/Zone1/Power#/PowerControl/0",
 "MemberId": "0",
 "Name": "System Power Control",
 "PowerConsumedWatts": 8000,
 "PowerMetrics": {
 "IntervalInMin": null,
 "MinConsumedWatts": null,
 "MaxConsumedWatts": null,
 "AverageConsumedWatts": null
 }
 }]
}

5.4. Rack Power Control

In the rack power control use case, the Redfish Client sets a power limit on the rack.

5.4.1. Set to limit for power usage for the rack

The power usage for the rack is modifying the PowerLimit object within the Power resource
associated with the rack hardware.
The properties are writeable, so they can be PATCH'ed directly.
PATCH /redfish/v1/Chassis/Rack/Power

With the message
{
 "PowerLimit": {
 "LimitInWatts": 300
 }
}

Note that the PowerLimit complex properties has other properties that may be set during the
same patch.

The LimitException property specifies the action if the power limit cannot be enforced. The
possible values are: "NoAction", "HardPowerOff", "LogEventOnly".
{
 "PowerLimit": {
 "LimitInWatts": 300,
 "LimitException": "LogEventOnly",
 "CorrectionInMs": 100
 }
}

5.5. PSU Status/Health

In the PSU Status/Health use case, the Redfish Client gets the health and status of the PSU
(Power Supply Unit)

5.5.1. Obtain the status and health of the PSU

The status and health of the power supply unit is obtained from the Power resource
associated with the rack hardware.
GET /redfish/v1/Chassis/Rack/Power

The status and health of the power supply is obtained from the PowerSupplies object within
the Power resource associated with the rack hardware. Specifically the Status object
contains both State and Health properties.
{
 "@odata.id": "/redfish/v1/Chassis/Rack/Power",
 "@odata.type": "#Power.v1_1_0.Power",
 "Id": "Power",
 "PowerSupplies": [{
 "@odata.id": "/redfish/v1/Chassis/Zone1/Power#/PowerSupplies/0",
 "MemberId": "0",
 "Name": "Power Supply Bay 1",
 "Status": {
 "State": "Enabled",
 "Health": "Warning"
 },
 . . .
 "RelatedItem": [{
 "@odata.id": "/redfish/v1/Chassis/Rack"
 }]
 }]
}

5.6. Node Power Status

In the node power status use case, the Redfish Client obtains a node's power state and the
power usage reading.

5.6.1. Obtain power state of a node

The power state for the node in obtained from the Chassis resource representing the node
chassis or hardware.
GET /redfish/v1/Chassis/Node-1

The response contains the PowerState properties.
{
 "@odata.id": "/redfish/v1/Chassis/Node-1,
 "ChassisType": "Node",
 "PowerState": "On"
}

5.6.2. Obtain power usage for a node

The power usage for a node is obtained from the Power resource associated with the node
chassis or hardware.
GET /redfish/v1/Chassis/Node-1/Power

Which responds with the following message. The PowerConsumedWatts property contains
the value of instantaneous power usage.
{
 "@odata.id": "/redfish/v1/Chassis/Node-1/Power",
 "PowerControl": [
 {
 "Name": "System Power Control",
 "PowerConsumedWatts": 200
 }
]
 . . .
}

Note, the response also contains a PowerMetrics object. The PowerMetrics object contains
statistics regarding the power usage over a time interval (minimum, maximum, average).
{
 "@odata.id": "/redfish/v1/Chassis/Node-1/Power",
 "PowerControl": [
 {
 "MemberId": "0",
 "PowerMetrics": {
 "IntervalInMin": 1,
 "MinConsumedWatts": 197,
 "MaxConsumedWatts": 202,
 "AverageConsumedWatts": 199
 }
 }
]
}

5.7. Node Power Control

The power usage limit for the node is modifying the PowerLimit object within the Power
resource associated with the node's chassis or hardware.
The property is PATCH'ed directly.
PATCH /redfish/v1/Chassis/Node-1/Power

With the message
{
 "PowerLimit": {
 "LimitInWatts": 300
 }
}

The PATCH is similar to set the power limit on the rack, except the URI specifies the node's
Power resource, instead of the rack's Power resource.

5.8. Node Temperature

The temperature of a node is obtained from the Thermal resource subordinate to Chassis
resource which represents node's chassis.
GET /redfish/v1/Chassis/Node-1/Thermal

The response message is shown below. In the Temperatures array element whose
"PhysicalContext" property has the value of "Intake", the ReadingCelsius property contains
the value of temperature.
{
 "@odata.id": "/redfish/v1/Chassis/Node-1/Thermal",
 "Temperatures": [
 {
 "ReadingCelsius": 21
 "PhysicalContext": "Intake"
 }
]
}

 In the same array element, properties exists which specify the threshold values and the
range of the temperature readings.

{
 "@odata.id": "/redfish/v1/Chassis/Node-1/Thermal",
 "Temperatures": [
 {
 "PhysicalContext": "Intake"
 "UpperThresholdNonCritical": 42,
 "UpperThresholdCritical": 42,
 "UpperThresholdFatal": 42,
 "LowerThresholdNonCritical": 42,
 "LowerThresholdCritical": 5,
 "LowerThresholdFatal": 42,
 "MinReadingRangeTemp": 0,
 "MaxReadingRangeTemp": 200
 }
]
}

5.9. Node Health and Status

5.9.1. Obtain the status and health of the node

Redfish models a node as it physical chassis and the logical computer system. The
relationship between the two resource and specified by references. Figure shows how a
diagram of the resource tree.
To determine the status and health the node chassis is obtained by retrieving the chassis
resource which represent the chassis and hardware. or the node.
GET /redfish/v1/Chassis/Node-1

Which responds with the following message. The PowerConsumedWatts property contains
the value of instantaneous power usage.
{
 "@odata.id": "/redfish/v1/Chassis/Node-1",
 "Status": {
 "State": "Enabled",
 "Health": "OK"
 }
}

The status and health the node computer system aspect is obtained by retrieving the System
resource representing the logical aspect of the
GET /redfish/v1/System/Node-1

The following message is the response. The System's Status object contains an additional
property, HealthRollup.
{
 "@odata.id": "/redfish/v1/System/Node-1",
 "Status": {
 "State": "Enabled",
 "Health": "OK",
 "HealthRollup": "OK"
 }
}

Which responds with the following message. The PowerConsumedWatts property contains
the value of instantaneous power usage.

5.9.2. Status and health of the CPUs

The status and health the node CPUs is obtained by retrieving the System resource which
represent the node.
GET /redfish/v1/System/Node-1

The following message is the response. The information of interest is contained in the
Status object, which is contained by the ProcessSummary object.
{
 "@odata.id": "/redfish/v1/System/Node-1",
 "ProcessorSummary": {
 "Count": 8,
 "LogicalProcessorCount": 256,
 "Model": "Multi-Core Intel(R) Xeon(R) processor 7xxx Series",
 "Status": {
 "State": "Enabled",
 "Health": "OK",
 "HealthRollup": "OK"
 },

}

More details and health of the individual processors can found by inspecting the individual
processor resources in the Processors collection resource.

5.9.3. Status and health of the memory

The status and health the node's memory is obtained by retrieving the System resource which
represent the node.
GET /redfish/v1/System/Node-1

The following message is the response. The information of interest is contained in the
Status object.
{
 "@odata.id": "/redfish/v1/System/Node-1",
 "MemorySummary": {
 "TotalSystemMemoryGiB": 16,
 "MemoryMirroring": "System",
 "Status": {
 "State": "Enabled",
 "Health": "OK",
 "HealthRollup": "OK"
 }
 }
}

5.9.4. Obtain the state of the LED

The state of the LED is obtained by retrieving the Chassis resource which represent the node
chassis.
GET /redfish/v1/Chassis/Node-1

The response contain the following fragment. The information of interest is the value of the
IndicatorLED property.
{
 "@odata.id": "/redfish/v1/Chassis/Node-1",
 "IndicatorLED": "Lit"
}

5.9.5. Retrieve the RMC log

The RMC log is by retrieving the Log resource, which represent the RMC's log.
GET /redfish/v1/Managers/RMC/LogService/Log

The response contains the following fragment.
{
 "@odata.id": "/redfish/v1/Managers/RMC/LogServices/Log",
 "Id": "Log1",
 "Name": "Rack Manager Log",
 "Description": "This log contains entries related to the operation of the BMC",
 "MaxNumberOfRecords": 100,

 "OverWritePolicy": "WrapsWhenFull",
 "DateTime": "2020-03-13T04:14:33+06:00",
 "DateTimeLocalOffset": "+06:00",
 "ServiceEnabled": true,
 "LogEntryType": "Event",
 "Status": {
 "State": "Enabled",
 "Health": "OK"
 },
 "Actions": {
 "#LogService.ClearLog": {
 "target": "/redfish/v1/Managers/RMC/LogServices/Log/Actions/LogService.ClearLog"
 }
 },
 "Entries": {
 "@odata.id": "/redfish/v1/Managers/RMC/LogServices/Log/Entries"
 }
}

5.9.6. Retrieve the System logs

The System's log are retrieved is obtained by retrieving the Log resource which represent the
node's log.
GET /redfish/v1/Systems/Node-1/LogService/Log

The response contains the following fragment.
{
 "@odata.id": "/redfish/v1/Systems/Node-1/LogServices/Log",
 "Id": "Log",
 "Name": "System Log",
 "Description": "This log contains entries related to the operation of a system",
 "MaxNumberOfRecords": 1000,
 "OverWritePolicy": "WrapsWhenFull",
 "DateTime": "2015-03-13T04:14:33+06:00",
 "DateTimeLocalOffset": "+06:00",
 "ServiceEnabled": true,
 "LogEntryType": "Event",
 "Status": {
 "State": "Enabled",
 "Health": "OK"
 },
 "Actions": {
 "#LogService.ClearLog": {
 "target": "/redfish/v1/Systems/Node-1/LogServices/Log/Actions/LogService.ClearLog"
 }
 },
 "Entries": {
 "@odata.id": "/redfish/v1/Systems/Node-1/LogServices/Log/Entries"
 }
}

5.10. Obtain the firmware revision

5.10.1. Obtain the revision of Rack Manager firmware

The version of firmware on the rack manager is obtained by retrieving the Manager resource
which represents the rack manager.
GET /redfish/v1/Managers/RMC

The response contains the following fragment. The information of interest is the value of
the FirmwareVersion property.
{
 "@odata.id": "/redfish/v1/Managers/RMC",
 "Id": "RMC",
 "FirmwareVersion": "1.00"
}

5.10.2. Obtain the revision of the BIOS firmware on each system

The version of BIOS firmware on a system is obtained by retrieving the System resource
which represents the system.
GET /redfish/v1/Systems/{id}

The response contains the following fragment. The information of interest is the value of
the BiosVersion property.
{
 "@odata.id": "/redfish/v1/System/CS_1",
 "Id": "CS_1",
 "BiosVersion": "P79 v1.00 (09/20/2013)"
}

5.10.3. Obtain the revision of the BMC firmware on each system

The version of firmware on the BMC on a system is obtained by retrieving the Manager
resource which represents the BMC of interest.
GET /redfish/v1/Managers/BMC_1

The response contains the following fragment. The information of interest is the value of
the FirmwareVersion property.
{
 "@odata.id": "/redfish/v1/Managers/BMC_1",
 "Id": "BMC_1",
 "FirmwareVersion": "1.00"
}

5.10.4. Obtain the revision of PSU firmware

The version of firmware on the PSU is obtained by retrieving the Power resource subordinate
to the Chassis resource which represents the chassis of interest.
GET /redfish/v1/Chassis/Ch_1/Power

The response contains the following fragment. The information of interest is the value of
the FirmwareVersion property.

{
 "@odata.id": "/redfish/v1/Chassis/Ch_1/Power",
 "Id": "Power",
 "PowerSupplies": {
 {
 "@odata.id": "/redfish/v1/Chassis/Ch_1/Power#/PowerSupplies/0",
 "MemberId": "0",
 "FirmwareVersion": "1.00"
 }
]
}

5.11. Update Firmware

The firmware can be updated with a pull or push method. The "Redfish Firmware Update
Whitepaper"[3] has detail discussion of the firmware update process.

The main process is for the firmware package to be delivered opaquely, and the Redfish
Service interprets the firmware package to determine the components that are updated. The
Targets property can be used to guide and constrain this behavior.

5.11.1. Update Firmware on the Rack Manager

The rack manager firmware maybe updated with the pull or push method.

5.11.1.1. Pull Method

To update the firmware on the rack manager via the pull method, the client invokes the
following command.
POST /redfish/v1/UpdateService/Actions/SimpleUpdate

The POST command includes the following message. The value of the ImageURI property is
the path to the new rack manager firmware image. The message may also include the
TransferProtocol, Username and Password properties..
POST /redfish/v1/UpdateService/Actions/UpdateService.SimpleUpdate HTTP/1.1 Content-Type:
application/json Content-Length:
{
 "ImageURI": "https://192.168.1.250/images/rmc_update.bin",
 "Target": [
 "/redfish/v1/managers/RMC"
]
}

If the Redfish service starts a task to handle the firmware update, it will respond with a task
pointer, TaskMonitorURI. The client monitors the task by performing GETs on the
TaskMonitorURI and inspects the response.

5.11.1.2. Push Method

To update the firmware on the rack manager via the push method, the client invokes the
following command.
POST /redfish/v1/UpdateService/upload

The POST command includes the following multi-part message
Content-Type: multipart/form-data; boundary=---------------------------d74496d66958873e
Content-Length:

-----------------------------d74496d66958873e
Content-Disposition: form-data; name="UpdateParameters"
Content-Type: application/json

{
 "Target": [
 "/redfish/v1/managers/RMC"
]
}

-----------------------------d74496d66958873e
Content-Disposition: form-data; name="UpdateFile"; filename="bmc_update.bin"
Content-Type: application/octet-stream

<software image binary>

If the Redfish service starts a task to handle the firmware update, it will respond with a task
pointer, TaskMonitorURI. The client monitors the task by performing GETs on the
TaskMonitorURI and inspects the response.

5.11.2. Update Firmware on one or more Nodes

The node firmware maybe updated with a pull or push method.
To update the firmware on a node, the process described above for the rack manager
firmware can be used with minor changes. The primary change is the Target property, if it is
used.

The Target property can specify the components, of interest.
{
 "Targets": [
 "/redfish/v1/Systems/CS-3"
 "/redfish/v1/Managers/BMC_3"
]
}

The Target property can specify the node, of interest.
{
 "Targets": [
 "/redfish/v1/systems/CS-3"
]
}

The Targets property can specify the nodes, of interest.
{
 "Target": [
 "/redfish/v1/systems/CS-1",

 "/redfish/v1/systems/CS-3"
]
}

5.12. Group Operations

Group operations are performed using the AggregationService. Groups can be passed with
the action (temporary) or as an action upon a group which had been previously created
(persistent). The AggregateService resource contains the Aggregates collection resource
which contains the persistent groups that have been specified.
GET /redfish/v1/AggregationService

The POST request shall contain a request body.
{
 "@odata.id": "/redfish/v1/AggregationService",
 "Id": "AggregationService",
 "Description": "Aggregation Service",
 "Name": "Aggregation Service",
 "ServiceEnabled": true,
 "Status": {
 "Health": "OK",
 "HealthRollup": "OK",
 "State": "Enabled"
 },
 "Aggregates": {
 "@odata.id": "/redfish/v1/AggregationService/Aggregates"
 },
 "Actions": {
 "#AggregationService.Reset": {
 "target": "/redfish/v1/AggregationService/Actions/AggregationService.Reset",
 "@Redfish.ActionInfo": "/redfish/v1/AggregationService/ResetActionInfo"
 },
 "#AggregationService.SetDefaultBootOrder": {
 "target": "/redfish/v1/AggregationService/Actions/AggregationService.SetDefaultBootOrder",
 "@Redfish.ActionInfo": "/redfish/v1/AggregationService/SetDefaultBootOrderActionInfo"
 }
 },
 "@odata.id": "/redfish/v1/AggregationService/",
}

5.12.1. Reset a temporary group of nodes

To perform a reset of a temporary group, a HTTP POST is invoked. The resource URI to use
for the POST is determined by inspecting the AggregateService resource. The resource URI
is the 'target' property of the within the #Aggregate.Reset property.

To perform a reset of the group, a POST is invoked to the value of the Target property within
the #Aggregate.Reset property.
POST /redfish/v1/AggregationService/Actions/Aggregate.Reset

The POST request shall contain a request body. The contents of the request body are
described by resource specified by the @Reddfish.ActionInfo property. The TargetURIs
property specifies the group to be used. After the group is used, it is forgotten.
{
 "BatchSize": 10,
 "DelayBetweenBatchesInSeconds": 15,
 "ResetType": "ForceRestart",
 "TargetURIs": [
 "/redfish/v1/Systems/cluster-node3",
 "/redfish/v1/Systems/cluster-node4"
]
}

5.12.2. Reset a persistent group of nodes

To update a persistent set of nodes, the client invokes the following command.
POST /redfish/v1/AggregationService/Aggregates/Agg1/Actions/Aggregate.Reset

The POST command contains a request body. The ResetType property specifies what type of
reset to perform and is mandatory. The BatchSize and DelayBetweenBatechesInSeconds
specifies that the reset be done in batches, instead of all at the same time.
{
 "BatchSize": 10,
 "DelayBetweenBatchesInSeconds": 15,
 "ResetType": "ForceRestart"
}

5.12.3. Create a Persistent Set of Nodes

The previous usage model assumes that the aggregate, Agg1, already exists in the Aggregates
collection.

To create an aggregate, the client invokes the following command.
POST /redfish/v1/AggregationService/Aggregates/Agg1

The response contains the following fragment. The Elements property contains the members
of the group. The Actions property contains the actions that can be performed on the
aggregate. An action is invoked by POST'ing to the URI value of the Target property with a
request body containing the properties described in the ActionInfo resource.
{
 "@odata.id": "/redfish/v1/AggregationService/Aggregates/Agg1",
 "Id": "Agg1",
 "Name": "Aggregate One",
 "ElementsCount": 2,
 "Elements": [
 {
 "@odata.id": "/redfish/v1/Systems/cluster-node3"
 },
 {
 "@odata.id": "/redfish/v1/Systems/cluster-node4"
 }

]
}

5.12.4. Set the Boot Order to their defaults a persistent group of nodes

To set the boot order of a persistent group of nodes to their default boot order, the client
invokes the following command.
POST /redfish/v1/AggregationService/Aggregates/Agg1/Actions/Aggregate.SetDefaultBootOrder

The POST command has no request message.

5.13. Authorization between rack manager and manage node

The use cases specified below is the support the process for authorization between the rack
manager and the managed node as described in section 6.

5.13.1. Get the certificate from each node

The certificate for a node is retrieved as member of the Certificates collection for the node.
GET /redfish/v1/Systems/Node-1/Certificates/Cert-1

The response contains the following fragment.
{
 "@odata.id": "/redfish/v1/Systems/Node-1/Certificates/Cert-1",
 "Id": "Cert-1",
 "Name": "HTTPS Certificate",
 "CertificateString": "-----BEGIN CERTIFICATE-----\n...\n-----END CERTIFICATE-----",
 "CertificateType": "PEM",
 "Issuer": {
 "Country": "US",
 "State": "Oregon",
 "City": "Portland",
 "Organization": "Contoso",
 "OrganizationalUnit": "ABC",
 "CommonName": "manager.contoso.org"
 },
 "Subject": {
 "Country": "US",
 "State": "Oregon",
 "City": "Portland",
 "Organization": "Contoso",
 "OrganizationalUnit": "ABC",
 "CommonName": "manager.contoso.org"
 },
 "ValidNotBefore": "2018-09-07T13:22:05Z",
 "ValidNotAfter": "2019-09-07T13:22:05Z",
 "KeyUsage": [
 "ServerAuthentication"
]
}

5.13.2. Place a certificate on a managed node

The certificate is placed on a managed node with the following HTTP command.
POST /redfish/v1/Systems/{id}/Certificates/SystemID

The response contains the following fragment. The KeyUsage property shall have the
value(s) ??.
{
 "@odata.type": "#Certificate.v1_1_0.Certificate",
 "Id": "1",
 "Name": "HTTPS Certificate",
 "CertificateString": "-----BEGIN CERTIFICATE-----\n...\n-----END CERTIFICATE-----",
 "CertificateType": "PEM",
 "Issuer": {
 "CommonName": "…" },
 "Organization": "…",
 "OrganizationalUnit": "…"
 },
 "Subject": {
 "CommonName": "…" },
 "Organization": "…",
 "OrganizationalUnit": "…"
 },
 "ValidNotBefore": "2018-09-07T13:22:05Z",
 "ValidNotAfter": "2019-09-07T13:22:05Z",
 "KeyUsage": [
 "KeyCertSign"
],
 "@odata.id": "/redfish/v1/System/1/Certificates/SystemID",
}

5.13.3. Place a token on a managed node

The token is placed on a managed node with the following HTTP command.
POST /redfish/v1/Systems/{id}/Certificates/Token

The response contains the following fragment. The KeyUsage property shall have the
value(s) ??.
{
 "@odata.type": "#Certificate.v1_1_0.Certificate",
 "Id": "1",
 "Name": "HTTPS Certificate",
 "CertificateString": "-----BEGIN CERTIFICATE-----\n...\n-----END CERTIFICATE-----",
 "CertificateType": "PEM",
 "Issuer": {
 "CommonName": "…" },
 "Organization": "…",
 "OrganizationalUnit": "…"
 },
 "Subject": {

 "CommonName": "…" },
 "Organization": "…",
 "OrganizationalUnit": "…"
 },
 "ValidNotBefore": "2018-09-07T13:22:05Z",
 "ValidNotAfter": "2019-09-07T13:22:05Z",
 "KeyUsage": [
 "KeyCertSign"
],
 "@odata.id": "/redfish/v1/System/1/Certificates/Token",
}

5.13.4. Place a certificate on the rack manager

The certificate is placed on the rack manager with the following HTTP command.
POST /redfish/v1/Managers/<RackManager>/Certificates/Certificate

Where <RackManager> is the member in which the "ManagerType" property has the value
"RackManager".

The response contains the following fragment. The KeyUsage property shall have the
value(s) ??.
{
 "@odata.type": "#Certificate.v1_1_0.Certificate",
 "Id": "1",
 "Name": "HTTPS Certificate",
 "CertificateString": "-----BEGIN CERTIFICATE-----\n...\n-----END CERTIFICATE-----",
 "CertificateType": "PEM",
 "Issuer": {
 "CommonName": "…" },
 "Organization": "…",
 "OrganizationalUnit": "…"
 },
 "Subject": {
 "CommonName": "…" },
 "Organization": "…",
 "OrganizationalUnit": "…"
 },
 "ValidNotBefore": "2018-09-07T13:22:05Z",
 "ValidNotAfter": "2019-09-07T13:22:05Z",
 "KeyUsage": [
 "KeyCertSign"
],
 "@odata.id": "/redfish/v1/<RackManager>/1/Certificates/Token",
}

5.13.5. Place a token on the rack manager

The token is placed on the rack manager with the following HTTP command.

POST /redfish/v1/Managers/<RackManager>/Certificates/Token

Where <RackManager> is the member in which the "ManagerType" property has the value
"RackManager".

The response contains the following fragment. The KeyUsage property shall have the
value(s) ??.
{
 "@odata.type": "#Certificate.v1_1_0.Certificate",
 "Id": "1",
 "Name": "HTTPS Certificate",
 "CertificateString": "-----BEGIN CERTIFICATE-----\n...\n-----END CERTIFICATE-----",
 "CertificateType": "PEM",
 "Issuer": {
 "CommonName": "…" },
 "Organization": "…",
 "OrganizationalUnit": "…"
 },
 "Subject": {
 "CommonName": "…" },
 "Organization": "…",
 "OrganizationalUnit": "…"
 },
 "ValidNotBefore": "2018-09-07T13:22:05Z",
 "ValidNotAfter": "2019-09-07T13:22:05Z",
 "KeyUsage": [
 "KeyCertSign"
],
 "@odata.id": "/redfish/v1/<RackManager>/1/Certificates/Token",
}

5.13.6. Place a manifest on token on rack manager

The manifest is placed on the rack manager with the following HTTP command.
POST /redfish/v1/Managers/rmc/ManageabilityManifest

The request contains the following fragment.
{
 "@odata.type": "#ManageabilityManifest.v1_0_0.ManageabilityManifest",
 "Id": "ManageabilityManifest",
 "Name": "Manageability Manift\est",
 "NodesToManage": {
 {
 "NodeName": "node1",
 "NodeIDCertificateString": "-----BEGIN CERTIFICATE-----\n...\n-----END CERTIFICATE-----",
 "CertificateType": "PEM"
 },
 {
 "NodeName": "node2",

 "NodeIDCertificateString": "-----BEGIN CERTIFICATE-----\n...\n-----END CERTIFICATE-----",
 "CertificateType": "PEM"
 },
 {
 "NodeName": "switch1",
 "NodeIDCertificateString": "-----BEGIN CERTIFICATE-----\n...\n-----END CERTIFICATE-----",
 "CertificateType": "PEM"
 },
 {
 "NodeName": "nas1",
 "NodeIDCertificateString": "-----BEGIN CERTIFICATE-----\n...\n-----END CERTIFICATE-----",
 "CertificateType": "PEM"
 }
 }

 "@odata.id": "/redfish/v1/Managers/rmc/ManageabilityManifest",
}

6. Security

6.1. Security Model

The security model leverages the authentication, and a flow to ensure every entity (node, rack manager,
CSP) has a certificate. Pushing/update certificate could follow the CSP or silicon vendor’s existing flow
to obtain/update the certificate. The model is RBAC security model, in which the CSP is the most
privilege entity in the chain (generate token for both rack manager and nodes and distributes. CSP also
sets up manifest and sends it to rack manager. Rack manager is the second in hierarchy who has
CSPs’ manifest and tokens of all managed nodes. The least privilege entity in the chain is node which
only possess its own token.

6.1.1. The necessity for tokens and manifests
Token is the proof of ownership of a node or rack manager by a CSPs and shows which entities on
rack belongs to which CSP. Manifest is the list of nodes from a particular CSP that a specific rack
manager should manage. Tokens are always encrypted in transit that rogue rack manager could not
manage nodes that are not designated to them.

6.1.2. Attestation
The authentication flow beyond the possession of a certificate as shown in discovery flow (6.6.1). In
the discovery flow, both node and node manager will authenticate each other’s token which is different
than the certificate.

6.2. Process for authorization between rack manager and managed node

This section specifies the process by which the rack manager verifies that a managed node is one it
is authorized to manage, and for a managed node to verify that a rack manager is authorized the
manage it.

6.3. Definitions

● Certificate = X.509 Certificate (All entities, node, rack manager and CSP)
● Node Certificate = Certificate issued by a CA for a node

● Rack Manager Certificate = Certificate issued by a CA for a rack manager
● Node Token = CSP certificate + Node Certificate signed by a CSP.

o The node token is created and distribute during initial setup by CSP and shows that the
managed node belongs to a CSP.

● Rack Manager Token = CSP certificate + rack manager certificate signed by a CSP.
o The rack manager token is created and distribute during initial setup by CSP and shows

that the rack manager belongs to a CSP.
● Manageability Manifest = CSP certificate + All Managed Nodes Token.

o The manifest lists the nodes on the rack that the rack manager can manage.
o The manifest is signed b the CSP
o Each managed node entry shall contain a node token.

● Managed Node List = Node Certificate + Time Stamp of Initial session establishment

In the Redfish Certificate Management Whitepaper [1], the node certificate and rack manager
certificate are referred to as device identity certificates.

6.4. Theory of Operations

The rack manager is provided a manageability manifest which includes a list of nodes that it can
managed.

As the rack manager discovers a node, it obtains the node's certificate and verifies whether the
manageability manifest contains the node. If so, it proceeds to proof to the node, that it has authority
to manage the node and challenges to node.

6.5. Procedure

6.5.1. Initial conditions

• Initial conditions of node
• Each managed node shall have a node certificate
• Each managed node shall have a node token.

• Initial conditions of rack manager
• The rack manager shall have a rack manager certificate
• The rack manager shall have a rack manager token
• The rack manager shall have a manageability manifest

6.5.2. Node Discovery

The following procedure is followed when the rack manager first discovers the presence of a
node.

The rack manager discovers the presence of the node on its rack and asks for nodes’
certificate. During discovery process, the rack manager knows nothing about the managed
nodes. It could broadcast a message or ping to get node’s certificate.
The rack manager shall attempt to locate the entry for the node in manifest.

If the entry is found, the rack manager shall send part of this manifest and random generated
challenge ([rack manager token + node token + challenge] encrypted by node’s public key)
to the node.

If the entry is not found, the rack manager shall remain silent

6.5.3. Node Authentication

The managed node shall decrypt the message with its own private key. It verifies the
signature of its own token and rack manager token. This authentication indicates that the
node manager is the legitimated rack manager assigned by CSP for this node.

If the authentication is successful, the managed node shall send the random generated
challenge encrypted by rack manager’s public key and nuance/time to the rack manager.

If the authentication is unsuccessful, the managed node shall remain silent
The rack manager shall decrypt and verify the challenge and check the freshness of
nuance/time. This indicates that the managed node is the node that the rack manager has been
configured to manage.

Both rack manager and managed node shall generate session keys based on the challenge and
nuance/time to establish a connection.

Rack manager shall retain the node certificate and time stamp at which the connection was
established.

6.5.4. Certificate Revocation Management
From Rack manager’s perspective, CSP would be in charge of revocation of a node, and they would
update the manifest and pass it to Rack manager to inform it about the revocation status. Rack manager
follows Update/Revoke flow in 6.6.2 to terminate session for any revoked nodes.

6.6. Flows

6.6.1. Managed Node starts up (Discovery Flow)

6.6.2. Manageability Manifest Updated

6.7. Threat and Risk Model

6.7.1. Assets

Asset

Risk Reason for Classification

1 Node’s Token &
Rack Manager’s
Token

Primary High Node/Rack Manager’s Token = CSP cert + Node/Rack
Manager cert signed by CSP.
This token shows that a node belong to a certain CSP.
It is a confidential info to preserve CSP’s inventory privacy
and to mitigate malicious attacks (more in thread model).
Token are always encrypted in transit

2 CSP’s Manifest Primary High Manifest = CSP cert + All managed node’s tokens
Manifest contains all the nodes that should be managed by a
rack manager
All tokens are encrypted by rack manager’s public key to
preserve confidentiality and privacy of tokens and mitigate
malicious attacks (more in thread model).

3 End user’s
data/Rack
Resource

Secondary High In transit and storage

6.7.2. Adversaries
Persona Motivation Attacker

Type
Starting
Privilege Level

Skill and Potential
Effort level

1 Rogue Node Intentional data
exfiltration and
access to resources

Network
Adversary

User-level
privileges

Highly skilled

2 Rogue Rack
Manager

Intentional data
exfiltration and
managing nodes

Network
Adversary

High privilege
level

Highly skilled

3 Malicious
Attacker

Intentional data
exfiltration and
managing nodes

Network
Adversary

User-level
privilege

Highly skilled,
dedicated

6.7.3. Threats

Threat Adversary Asset Rank Mitigation

1 Attacker intercepts
network traffic to
gain access to CSP’s
manifest to add
rogue node/rack
manager or to
discover CSP’s
nodes list for
targeted attack

Network
Adversary

Manifest H CSP’s manifest has
list of nodes’ token
encrypted by
designated rack
manager’s public key

2 Attacker set up a
rogue node/rack
manager to access
specific CSP’s nodes

Network
Adversary

End User’s
Data

H Nodes and rack
managers for a
particular CSP have a
token (CSP’s
certificate +
Node/Rack Manager
certificate signed by
CSP). Rogue node’s
and rogue rack
manager’s attempt
fails during discover
phase without valid
token.

3 Attacker sniffs the
traffic during CSP’s
initial token
distribution to access
legitimate node/rack
manager token to set
up a rogue node/rack
manager with reply
attack

Network
Adversary

Node/ Rack
Manager
Token

H Node/rack manager’s
token are always
encrypted during
transition with
node/rack manager’s
public key.

4 Rogue node attempts
to get added to a
CSP’s rack manager

Network
Adversary

End User’s
Data

H During discovery
phase, rack manager
checks if node’s
certificate is part of
CSP’s manifest. If
not, it logs a
“Unrecognized Node
on Rack” event in its

log (no session will
establish).

5 Rogue node attempts
to reply a legitimate
node certificate

Network
Adversary

End User’s
Data

H During discovery
phase, rack manager
will send a challenge
encrypted by
legitimate node’s
public key. Node
should resend back
the challenge
encrypted by rack
manager’s public key.
If rack manager could
not verify the exact
challenge sent, it
records a “Suspicious
Node on Rack” event
in its log (no session
will get established)

6 Revoked node
continues to use
resource of the rack

Network
Adversary

Rack
Resources

H After revocation, CSP
sends an updated
manifest to rack
manager. rack
manager terminates
the session of revoked
nodes during updated
manifest flow. It
records “Revoked
Node” event in its log.

7 Rogue rack manager
attempts to manage
CSP’s nodes

Network
Adversary

End User’s
Data

H In discovery flow,
rack manager send its
token to managed
node. Node verifies
rack manager’s token
signature to make sure
rack manager belongs
to the same CSPs as
itself . If it does not, it
logs “Suspicious Rack
manager” in its log.
(no session will get
established).

8 Non designated rack
manager (belong to
the same CSP as the
node) attempts to
manage nodes

Network
Adversary

End User’s
Data

H In discovery flow,
rack manager sends
node’s token from its
manifest as a proof
that this rack manager
is the designated rack
manager for that
node. Node verifies
the node token to
make sure rack
manager is its
designated rack
manager.
Other node managers
do not have node’s
token (encrypted
during transit)

9 A rogue rack
manager attempts to
reply legitimate
encrypted rack
manager’s token

Network
Adversary

End User’s
Data

H In discovery flow,
node decrypts rack
manager’s token and
checks the cert in
token with the cert
that rogue rack
manager passes down
early in discovery
flow. Discrepancy
leads to the fact that
node logs “Suspicious
Node Manger” event
(no session will get
establish).

7. References
[1] "OpenRMC Design Specification"
http://www.opencompute.org/

[2] Usage Guide and Requirements for the OCP Baseline Hardware Management Profile v1.0.1

[3] "Redfish Firmware Update White Paper"
https://www.dmtf.org/sites/default/files/standards/documents/DSP2062_1.0.0.pdf

[4] “Redfish API Specification”

https://www.dmtf.org/dsp/DSP0266

[5] "Redfish Certificate Whitepaper"
https://www.dmtf.org/sites/default/files/standards/documents/DSP2059_1.1.0.pdf

8. Revision

Revision/Version Date Description
Rev 1.0.0 final 6/14/2021 Released June 2021
Rev 1.1.0 v2 6/01/2021 Extend from Baseline Profile Add firmware update and

group operations capabilities
Rev 1.1.0 v3 6/15/2021 Add usage text for firmware update
Rev 1.1.0 v4 9/20/2022 Add authorization use case between rack manager and

managed node
Rev 1.1.0 v5 4/22/2023 Clean up most of new text
Rev 1.1.0 v6 5/26/2023 Security section added

