
Secure Firmware Recovery

EDITOR: Eric Spada, Broadcom

CONTRIBUTORS:
Wojtek Powiertowski, Facebook, Inc.
Ben Stoltz, Google
Bryan Kelly, Microsoft
Vladimir Dreizin, Broadcom
Edmund Szeto, Broadcom
Yigal Edery, NVIDIA
Varun Sampath, NVIDIA
Danny Ybarra, Western Digital

1

Revision History

Revision Date Guiding Contributor(s) Description

0.9 04-13-21 Eric Spada, Broadcom Draft Release

1.0-rc 06-14-22 Eric Spada, Broadcom Review Release

1.0 09-14-22 Eric Spada, Broadcom Final Release

2

Purpose
This document creates guidelines on how to recover a failed or compromised device. The
recovery operation provides a mechanism for a recovery agent (RA), in coordination with a
PA-ROT (Platform Active RoT), to recover a device's firmware and/or security critical
parameters of an AC-ROT (Active Component RoT). The recovery process MUST bring the
device to a known security state.

Audience
The audience for this document includes, but is not limited to, system and system component
designers, security information and event management (SIEM) system developers, and cloud
service providers.

Syntax and conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and
only when, they appear in all capitals, as shown here.

The roles “attester”, “verifier”, and “reference integrity measurements” are defined in the OCP
Attestation Doc

Introduction
Guiding principles for this document are based on NIST SP 800-193 and the three pillars
supporting Platform Resiliency:

● Protection – Secure boot/Attestation/Threat Model
● Detection – Attestation Doc
● Recovery – This Doc

This document focuses on the Recovery principle, which is a mechanism for restoring Platform
Firmware code and critical data to a state of integrity in the event that firmware code or critical
data have been corrupted, the device is unresponsive, or when forced to recover through an
authorized mechanism. While focusing on Recovery, the document will also discuss aspects of
Detection and Protection where needed.

The agents involved in the recovery process
● Device or AC-ROT: Device which is being recovered

3

https://tools.ietf.org/html/bcp14
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc8174
https://docs.google.com/document/d/1fzBnA6N9vGYj--Mxit9Whp0TPPyGqgOyBlHdgCN9F_Q
https://csrc.nist.gov/publications/detail/sp/800-193/final
https://docs.google.com/document/d/1fzBnA6N9vGYj--Mxit9Whp0TPPyGqgOyBlHdgCN9F_Q

● PA-ROT: System component responsible for determining the health of a device and
initiating recovery via the recovery agent.

● Recovery Agent (RA): System component responsible for orchestrating the recovery
process.

Relationship to Other OCP Security Documents
The threat model is described in the OCP threat model. When attestation is referred to in this
document, it assumes compliance with the OCP Attestation document. The device is expected
to conform to the OCP secure boot document. This includes all images including recovery. A
common glossary of terms for OCP security is referenced here.

Device Recovery and SP800-193 Alignment
The device shall follow the guidelines defined in the NIST SP800-193 specification, for its
firmware protection, tamper detection and recovery capabilities.

A device may or may not be able to persist critical data through a recovery process. A Device
that is unable to maintain critical data MUST go through a process to reestablish this data or be
returned to manufacture.

The Recovery process is a critical process for the overall security of the platform since the
PA-RoT. This document focuses on device recovery, specifically of the AC-ROT which is a
symbiont device to the PA-RoT.

Device Recovery’s goal is return a Device to its normal operation state running the correct
firmware as verified by Device Attestation.

Detection, remediation, corruption and initiating recovery action
The primary mechanism of detecting the boot state of symbiont devices by PA-ROT shall
leverage reporting and attestation capabilities of devices primarily based on the OCP Attestation
specification.

If a device does not pass attestation, then remediation must occur. If the device is functional
and has trusted images (healthy firmware and can respond to attestation), the firmware should
be updated via standard means. An example of firmware update procedures are described in
DMTF PLDM (Platform Level Data Model) Firmware update specification. If the device is
sufficiently out of date, a PA-ROT can choose to recover the device and to return it to a
consistent state.

This document further proposes a protocol to create a standard recovery protocol across
managed symbiont devices. In case of critical failure resulting in the symbiont device not being
able to communicate over a high-level protocol, the device and PA-RoT shall fallback to
recovery via SMBus.

4

https://docs.google.com/document/d/13I-meE6BxiLB_c-Mjr3cLLK9S0SjuPuRjPfS9yTG6P8/
https://docs.google.com/document/d/1fzBnA6N9vGYj--Mxit9Whp0TPPyGqgOyBlHdgCN9F_Q
https://docs.google.com/document/d/1Se1Dd-raIZhl_xV3MnECeuu_I0nF-keg4kqXyK4k4Wc/
https://docs.google.com/document/d/1NaWTRfXgNTiRzp8EnsYKjudo3z2lrdDK0dPyqer0DgU/

Types of Failures
Firmware recovery may be required for various reasons, the critical one being a corrupted
firmware image leading to boot failure. The attestation capabilities defined in the OCP
Attestation document provide the mechanisms to help identify issues with later stages of device
boot and configuration such as non-compliance of either firmware version or configuration, but
do not directly help reporting critical boot failures. Two type of remediation are defined below:

● Update: Device is in a functional state, but has old firmware or configuration. This is
updated via standard means and the security state is validated via attestation.

● Recovery: The device may or may not be in a functional state. The device can enter this
state via internal error handling mechanisms or the PA-ROT can force recovery if
permitted. The mechanism for Recovery is the primary goal of this document.

Response to firmware/configuration failures
Depending upon the failure one of the following actions can be performed:

● The device fails attestation. Standard firmware update mechanisms can be used to bring
the device into compliance.

● The device detects a failure and voluntarily enters recovery. This recovery interface can
be used to download or select a recovery image.

● The device is unresponsive (e.g. does not respond to MCTP messages). Forced
recovery can be used in this case to recover the device. If force recovery is not enabled
the device MAY need to be returned to manufacture.

Upon detection of firmware code or critical data corruption, PA-RoT SHALL initiate the recovery
process, which MAY be gated by authorization from the system administrator.

Administrative Forced Recovery
The RA instructs the device to enter recovery mode. This can be achieved using a recovery
command or physical presence indication (e.g. GPIO). The feature can be administratively
disabled but SHOULD be enabled by default. The control enabling this is outside of the scope of
this document. This can be used to bring a device back into compliance with minimal reliance
on state of the device. This command forces the device into a recovery state regardless of the
initial device state. Note: Forced recovery implicity trusts the RA/PA-RoT. This can cause a
denial-of-service attack affecting the device availability by using this interface to repeatedly
resetting/recover the device.

Recovery requirements across platform components
A recovery process might require recovering several devices or components to ensure a base
security state. By performing recovery across all critical components on the platform to a known
good set of firmware code, the PA-RoT ensures a recovery to a consistent and known state.

In order to provide long term security objectives, the PA-RoT should provide a means of
updating recovery images, since relying on a golden image (static recovery installed at
manufacturing) for recovery can lead to roll back to possibly vulnerable firmware. An example

5

method of updating a recovery image would be through A/B versioning, where one version is
latest/active, while the second acts as recovery. In this scheme an update is performed to the
recovery version, upon completing the update the latest/active and recovery roles switch
between A/B versions. In such A/B versioning schemes, This ensures that the recovery image is
not older than the N-1 version. If both A and B copies are corrupted, then a dedicated recovery
image (C-image) is used. This image should have the minimal footprint to enable attestation and
firmware update to bring the device into compliance. The C image can also be pushed into the
device using the indirect memory interface described in this document. Note the C image is
signed with the same secure boot keys as the production images and is subject to the same
anti-roll back rules.

Summary of images and roles
● A-image: A copy of operational image.
● B-image: B copy of operational image.
● C-image: Recovery image used to install/update A or B copy
● Critical data: data which is critical to the security of the device (e.g. provisioned identity)

Recovery Authorization
The platform policies may require an authorization of the recovery process. This can be
implemented through requiring physical presence indication, GPIO connected to the device
(AC-ROT/PA-ROT) or through forced recovery interface. Once the PA-ROT has received
authorization, the recovery of the platform devices (AC-ROT) can proceed. The PA-ROT can
force a recovery through this interface, if enabled, or can use a physical presence/GPIO to enter
recovery. The forced recovery interface MAY be disabled via a device specific means, but
SHOULD be enabled by default. The PA-RoT SHOULD be capable of performing recovery on
demand, at the behest of an authorized entity.

Reasons for Device Recovery
The device shall follow the guidelines defined in the NIST SP800-193 specification, for its
firmware protection, tamper-detection and recovery capabilities. A device may or may not be
able to persist critical data through a recovery process. Devices unable to maintain critical data
MUST go through a process to reestablish this data.

The following sections define the requirements for recovery of a device to an approved state
(approved by platform owner).

Device recovery flows for a component (AC-ROT) SHALL be initiated by the PA-RoT (RA) on
the following conditions:

1. Tampering of device firmware and/or sensitive security parameters is detected by the
platform root-of-trust.

2. Device is in an unknown state/fails to respond.
3. Forced recovery

6

4. Device detects corruption and enters recovery
5. PA-RoT determines via dynamic means (e.g. SPDM Challenge) the device is out of

compliance.
Tampering of device firmware and/or sensitive security parameters SHALL be detected by OCP
Attestation.
A PA-RoT MAY use platform specific mechanisms to isolate the device until it can be brought
into compliance. An example would be holding the PCIe reset of a device until it is properly
recovered.

Device Recovery Use Cases
There are several targeted use cases for recovery. The following section will outline 3 specific
use cases. From a NIST SP800-193 perspective, critical data includes provisioned identity as
well as security critical parameters. Depending on the type of failure, recovery may not include
this critical data.

Device Software Update
In this case, the device has been secure-booted properly (including anti-roll back check) and
has a functional attestation agent compliant with the OCP Attestation specification. Upon
successful challenge and comparison of measurements against the platform manifest, the
device firmware or configuration can be updated using unspecified update techniques.
Examples of these update techniques are DMTF PLDM firmware update or Cerberus firmware
update. In this case, the recovery process is not required or used.

Device Recovery with Critical Data
The device has entered or was forced into recovery by the RA. If supported, the C image can be
enabled from device flash to recover the device. The C image MUST be a dedicated firmware
used to bring the device back into compliance. If the recovery image is not present or valid, this
recovery image can be pushed into the device using the recovery flow as described in this
document. This use case assumes security information (critical data) and identity provisioning
(i.e. provisioned certificate stacks) are still available in the device.

Device Recovery without Critical Data
The device has entered or was forced into recovery by the RA and the critical data is corrupted
or erased (NOTE: this can not be used for ownership transfer). Critical data is defined in
SP800-193 as “mutable data which persists across power cycles and must be in a valid state
for the booting of the platform to securely and correctly proceed”. In our context, this can include
key manifests, provisioned certificates used for attestation, etc.

The same recovery procedure described above with intact critical data applies. However, once
the recovery image is booted the critical data needs to be reprovisioned into the device. There
are several means to reestablishing this identity including using a manufacturer provisioned

7

certificate stack, if available. Depending on the characteristics of the device, it may not be
possible to restore the device's critical security data without returning the device to the
manufacturer or provisioning facility.

Recovery Components and Roles
The following picture show various components of the recovery process

RA & PA-RoT Recovery Role

The RA & PA-RoT are responsible for the following tasks:
● Maintains the list of approved operational FW images for the devices
● Maintains the list of approved recovery FW images for the devices
● Protects the operational FW images from denial-of-service attacks
● Pushes operational FW images into the device (include recovery images)

○ For devices which store this recovery image locally the PA-RoT and AC-RoT
MUST provide a mechanism for updating this firmware.

8

● Downloads recovery FW images into the device
● Invokes device recovery from either persistently stored recovery FW image or

downloaded recovery FW image

AC-RoT Recovery Role

The AC-ROT SHALL perform the following tasks:
● Authenticates FW images during the Secure Boot process
● Authenticates ALL FW images via a cryptographic signature before usage
● Authenticates ALL FW images using key material that is cryptographically bound to

immutable keys
● Authenticates downloaded recovery FW image that is transient stored in RAM/DDR

before usage
● Authenticates All FW images persistently stored inside the device during Device

SecureBoot process
● Enforces Rollback policies using FW version, Key Revocation, anti-rollback counter
● Reports Secure Boot failure error flags. (MAY rely on the secure boot process to validate

the image as long as it reports this failure via the Recovery Reason code (missing or
corrupted boot firmware image (BFFIMC).)

● Supports Device Attestation identity authentication
● Includes ALL FW images (including persistently stored operational and recovery images)

in the reported Device Attestation results
● Manage device’s Recovery State

Immutable hardware SHALL serve as the device root-of-trust for recovery purposes. This can be
implemented in devices as hard-coded logic and/or immutable ROM code. Depending on the
corruption, the device's cryptographic identity may not be available until recovery has been
completed.

The device SHALL provide a path for the RA to push a recovery image or select a recovery
image from a local source.

Post-recovery, standard OOB attestation should be performed to verify device compliance. In
case of recovery, it is possible that the security critical data or provisioned information (i.e.
owner’s certificate) may have been lost, in such case attestation may fail. In such scenarios the
device may require re-provisioning of this information or return to manufacture.

On initiation of the device recovery flow by the RA, the device shall provide a mechanism to
replace the current mutable operational firmware image with an approved version that shall be
maintained in the PA-RoT. The device SHALL determine validity of the approved version by
performing digital signature verification of the firmware according to the OCP Secure Boot

9

specification. This implies that the recovery image is signed by the same RoT as the operational
firmware and uses the same anti-roll back counters.

Recovery Image
The PA-RoT is responsible for maintaining the list of approved firmware for devices and
protecting the recovery images from denial-of-service attacks. The RA is responsible for pushing
or activating this image onto the device. In the case of recovery image, the PA-RoT SHOULD
maintain a list of recovery images for the device. For devices which store this recovery image
locally it MUST provide a mechanism for updating this firmware.

The recovery image should be considered an operational image and must follow the OCP
secure boot document. Specifically, this image will be signed with the firmware signing key and
is subject to the anti-rollback counters. The device SHOULD verify the cryptographic signature
of the recovery image as a pre-step before performing recovery. A compliant device MAY rely
on the secure boot process to validate the image as long as it reports this failure via the
Recovery Reason code.
The following table is a summary of the firmware components.

TERMINOLOGY DEFINITION

A-Image A copy of operational image with associated
Critical Data[x]. This image is persistently stored in
Device’s flash memory.

B_Image B copy of operational image with associated
Critical Data[y]. This image is persistently stored in
Device’s flash memory.

C_image:PersistentRecoveryImage This FW image installs/updates the A/B images
This image is persistently stored in the device’s
Flash memory. This image is selected via recovery
image selection

C_image:TransientRecoveryImage This FW object installs/updates the A/B images
This image is transiently stored in the device’s
transient memory. This image is selected via
recovery image selection

FW_Update:NormalImage This FW download package updates A/B and MAY
contain C_image:PersistentRecoveryImage.

FW_Update:TransientRecoveryImage This FW image is transformed into
C_image:TransientRecoveryImage. This image is
transiently stored in RAM.

10

All FW images shall support the following qualities:
· shall support cryptographic authentication (FW signatures)
· shall be signed with key material that is cryptographically bound to the device’s
immutable ROOT Key (secure boot)
· shall check for Rollback protection

Recovery Process
When needed, the PA-RoT shall orchestrate the recovery flow for devices by using the recovery
agent (RA). A recovery agent (RA) is a defined component which is responsible for coordinating
the recovery process. The RA MAY be part of the PA-RoT or a separate component. The RA will
use the PA-ROT as the source for all images and configuration. A multi-state recovery process
may be required in order to bring the device into full compliance.

The health of a device is maintained by the platform and is outside of the scope of this
specification. This determination is typically done by using information from the PA-RoT. If a
device is declared unhealthy, normal software update procedures (e.g., DMTF PLDM) should be
used to bring the device into compliance. That is, the recovery process is not a replacement for
a normal software update and should be viewed as a last resort before the device is declared
un-recoverable.

The RA can query the device status using this protocol via reading the device status register.
The device status MUST indicate status for the software component which is used for
attestation. Other software components (e.g. other compute domains within a device) SHOULD
NOT be reported in this status register. The status register is only valid when it is not zero (e.g.
not pending). This allows time for a boot process on the device to properly reflect the status.
This status is informational only and the state of the device SHOULD be cryptographically
attested by using the attestation procedure in the OCP attestation documents.

The following picture depicts the overall process to recover a device. The recovery process is
entered after a device is declared unhealthy by the platform or the device. A device MAY be
administratively commanded to recover via forced recovery, if enabled. Forced recovery MAY
be disabled via a device specific means. A device MUST advertise forced recovery via the
capabilities described in this spec if a device is capable and enabled. The device status is read
to determine the next steps of the recovery process.

11

A device passes through a number of states in the recovery process. The following definition of
the defined states:

● Healthy - device is running an operational image. This state is designed only to reflect
the status of the management entity firmware. Specifically, In devices which contain the
attestation agent and firmware update process. The PA-RoT is responsible for
determining if the device is healthy.

● Not healthy - the device is not healthy. The recovery reason code contains additional
information. Depending upon the recovery reason code, additional information can be
optionally communicated.

● Recovery state - a device in the recovery state is ready to accept either a pushed image
or a command to use the recovery image stored on the device (C image).

12

● Recovery pending - a device which has completed the image push or selected the
recovery image.

● Recovery successful- The recovery image is currently running.

Recover Interface Functions

Device Reset
Multiple device resets may be required to fully recover a device. A device MAY support device
reset via this interface (RESET) or rely on a platform reset mechanism. A device MAY support
two different types of resets. A device reset via the RESET registers will reset the device and
MAY cause a bus enumeration. A device MAY support a management reset where only a
subset or management portion of the device is reset. A device which supports management
reset:

● MUST NOT cause a bus re-enumeration of the device.
● MUST reset all security components of the device. This includes any processor

subsystem responsible for attestation of the device.

Forced Recovery
A device can be commanded to enter recovery mode. This is achieved by writing forced
recovery to the RESET register. At the next reset, the device will enter recovery mode. A device
MAY disable forced recovery via device specific means. A device which has been commanded
to enter recovery but forced recovery is disabled MUST report “Error entering Recovery mode”
in the RECOVERY_STATUS register.

Recovery Image Push
A device MAY have entered the recovery state based on local error conditions. For example, a
signature failure on the first mutable image loaded by the ROM. The device MUST reflect the
recovery state in the device status register. A device in this state is ready to receive or select the
recovery image.

A device in recovery is ready to accept the recovery image if supported. This image is pushed
via the memory window or a local recovery image can be selected. This selection is written to
the RECOVERY_CTRL register. If the push protocol is used it MUST be written using the
indirect memory protocol to a memory region (CMS) specified for code. The recovery window
CMS MUST be selected in the RECOVERY_CTRL command. The RECOVERY_CTRL
command MUST be completed before image activation.

Recovery Image Selection
A device which supports c-image as the recovery image MUST use the RECOVERY_CTRL to
select this mode. This command MUST be completed before image activation.

13

Recovery Image Activation
Once the image is fully written or local c-image is selected, an activation command MUST be
performed to activate the recovery image. The activation process MUST ensure the device
restarts into the device immutable trust anchor as described in OCP secure boot document. An
image waiting for activation of the recovery image MUST report “Recovery Pending'' in the
DEVICE_STATUS. The result of activation will start running the recovery image. A device MAY
uses a management reset to implement the activation function.

NOTE:
It is possible to combine image selection and image activation. In this case, the recovery image
and activation are sent in the same command RECOVERY_CTRL (i.e. writing
0xF|imagemode|CMS). This will cause the device to immediately start executing the recovery
image.

Recovery Image Authentication and Operation
After the image is activated, it executes as an operational image and MUST pass all security
checks defined in the OCP secure boot document. When the recovery image is running it MUST
report “Running Recovery Image” in the DEVICE_STATUS registers. The recovery image is
responsible for attestation and bringing the firmware or configuration data into compliance.
Once the recovery process is complete, the device SHOULD use device reset to activate an
operational image.

Normal/Healthy Operation
A device in this state is fully functional and running operational firmware. The device MUST
report “Device Healthy” in the DEVICE_STATUS registers when running operational firmware.

Recovery Interface
The recovery interface abstractly is described by block read and write commands. These
commands can be implemented using many protocols. The following sections describe different
mechanisms.
The following command groups are defined in the following table

Table 1 - Recovery Command Summary

Command Req Scope Notes

PROT_CAP Y A Device Capabilities Information

DEVICE_ID Y A Device identity information

DEVICE_STATUS Y A Device status information

14

DEVICE_RESET N A Device reset and control

RECOVERY_CTRL Y A Recovery control and image activation

RECOVERY_STATUS N A Recovery status information

HW_STATUS N R Hardware status including temperature

INDIRECT_CTRL N R Indirect memory window control

INDIRECT_STATUS N R Indirect memory window status

INDIRECT_DATA N R Indirect memory window for pushing recovery image

The req column indicates if the command is required. The scope column indicates when the
command must be active (e.g., RA can expect a response).

● A - indicates the command should be available anytime the device SMBus interface is
available.

● R - indicates the recovery interface must be active. This is indicated by a non-zero
device_status.

Capability/Discovery
The capabilities of the device are discovered via reading PROT_CAP.

Indirect Memory Interface
A common indirect access mechanism is defined to facilitate reading and writing memory
spaces within the device. Component Memory Spaces (CMS) are mapped directly to the
resources within the device in a device specific way. The device resource can be memory,
registers, flash or other device resource. This interface allows for a common interface to
exchange code, logs or other vendor defined data with the device. If the indirect memory
interface is supported, it MUST support at least one memory region. The code, critical and
vendor-defined CMS types are defined and described in the following sections.

The size (INDIRECT_SIZE) and type (INDIRECT_TYPE) of memory space is queried by writing
the memory region to the INDIRECT_CTRL register and reading the INDIRECT_STATUS. A
CMS can use either polling or direct access. This is reported as the high-order bit of the CMS
type.

Addressing within a Component Memory Spaces
Addressing within a CMS maps the INDIRECT_DATA window into the CMS. An indirect memory
offset (IMO) is maintained within the current CMS and is always 4-byte aligned. The base
address of the CMS within the device is vendor defined. Before writing to a CMS, the type and

15

size of a CMS SHOULD be determined by the INDIRECT_CTRL command. The first byte of an
address region is defined as byte 0 written to the INDIRECT_DATA registers when the indirect
memory offset (IMO) is zero. The IMO is incremented by the number of bytes written to the
INDIRECT_DATA registers module 4 bytes. Changing the CMS or IMO in the INDIRECT_CTRL
MUST reset the IMS counter to zero. For non-polling regions, the device is expected to be able
to accept continuous requests. If a region requires polling, the ACK status is reported in the
INDIRECT_STATUS register when the device can accept the next transaction. The RA MUST
poll the INDIRECT_STATUS register before the next INDIRECT_DATA transaction. The ACK
indication is cleared on read.

The following figure shows the relationship between various indirect commands, the CMS and
device resources.

Error conditions
● Address Wrapping: (e.g the IMO extends beyond the reported size). This MUST wrap to

the beginning of the buffer AND report an overflow in the INDIRECT_STATUS.
● Writing to a read only CMS: This MUST not write to the internal address space and

report an access error in the INDIRECT_STATUS.

16

● Writing or Reading to a polling enabled region when not ready. This transaction MUST
be ignored and MUST NOT increment the IMO. A polling error in the
INDIRECT_STATUS must be reported.

● Unaligned access to CMS. IMO address will be truncated (e.g. lower bit set to zero)

Code CMS
A code region is designed to deposit code (the recovery image) to facilitate the recovery
process. A device which supports code push MUST support at least one memory region and be
mapped to Memory region 0 (CMS=0). Multiple code spaces can be used to support multiple
domains within the device, but these are used in a vendor specific way.
Once all bytes of the recovery image are written to the device, then the image can be activated
by writing the recovery CMS to the RECOVERY_CTRL register.
For these spaces, care MUST be taken to prevent time-of-check to time-of-use attacks. One
way to accomplish this is to map the code region to a non-secure region and close the region
after it has been activated.

Critical Logging CMS
This CMS used for logging is defined as read only. Support of critical logging is optional. Write
access to the region MUST not make changes to the CMS and report an error in the
INDIRECT_STATUS register. The critical logs are not signed and no security guarantees are
provided. In addition, the logs may not persist a device reset.
The log is viewed as a circular buffer. Entries are added to the log in a sequential fashion. The
entry identifier must be unique and monotonic. Based on parsing of the debug log and entry
identifiers, the event sequence can be inferred. The general structure uses a magic number,
length and entry_id. The entry contains a debug log entry which contains a format and opaque
payload.

LOG_MAGIC_NUMBER 0xE5E5
struct debug_log_entry {

struct logging_entry_header header; /**< Standard logging header. */
struct debug_log_entry_info entry; /**< Information for the log entry. */

};
struct logging_entry_header {

uint16_t log_magic; /**< Start of entry marker. */
uint16_t length; /**< Total Length of the entry. */
uint32_t entry_id; /**< Unique entry identifier. */

};
struct debug_log_entry_info {

uint16_t format; /**< Format of the log entry (msg_body) */
uint8_t msg_body[]; /**< body of log message. */

};

Vendor Defined CMS
Two types of vendor defined regions are defined, one which is read only (vendor defined logs)
and one which is read/write.

17

Recovery SMBus Interface
This section describes a recovery protocol based on SMBus/I2C block read and write
commands. The recovery protocol requires an SMBus compliant interface between RA and the
managed card used to transport the recovery protocol. The recovery protocol is designed to be
simple and MUST be embedded into ROM or dedicated hardware.

As per SMBus 3.1 spec, each Block Write/Read contains a byte for the Command Code,
followed by a byte for Byte Count and up to 255 bytes of data. Command data sizes vary
depending on the commands; refer to table below for specifics.
The following are the requirements for the recovery interface for SMBus/I2C:

● MUST be compliant with ”System Management Bus (SMBus) Specification version 3.1,
19 Mar 2018”.

● MUST support physical layer per spec specified in [SMB 31]
● MUST support Class 100 kHz operation
● SHOULD support Class 400 kHz and Class 1 MHz operation
● MUST support data link layer per spec in [SMB 31]
● MUST support network layer per spec in [SMB 31]
● MUST support block read and write with and without PEC protocols.
● SHOULD support and use Address Resolution Protocol (ARP) for dynamic target

address assignment.
● SMBus interface and recovery agent SHOULD be designed to have maximum uptime

and have minimal external dependencies (e.g., flash).
● MUST respond to recovery commands sent by RA once target address is assigned or to

default address
● MUST support target functionality
● MUST not support master functionality when in recovery mode
● MUST support a fixed I2C address, if ARP is not used. If a shared topology is used then

the default SHOULD be 0xD4 (7-bit) for a separate topology it SHOULD be 0xD2.
● SHOULD use PEC checksum per SMB 3.1

The recovery protocol does not require MCTP or any variant of protocol that runs on top of
MCTP. The recovery protocol does not depend on bidirectional communication initiation. The
recovery protocol MAY exist on the same interface as the one used for MCTP, provided there is
a way to deliver non-MCTP commands to the recovery interface. The recovery interface can
also be a separate standalone SMBus interface. The following two diagrams depict a few
different topologies. NOTE: The preferred topology is a separate address for the recovery
interface. I3C will only support this topology since the command byte is not specified in the I3C
specification.

SMB Topology
There are two topologies supported. In the first topology, the recovery interface and the MCTP
EP share the same SMBus address. Note in this topology the default I2C address SHOULD be
0xD4.

18

Diagram of shared SMBus interface

The second topology has separate components for the recovery interface and MCTP End Point
(EP). Note the connection between the controllers can be external (e.g. separate pins) or
internal. Note2 in the topology the default I2C address SHOULD be 0xD2.

Diagram of separate SMBus interface for recovery

19

SMBus Device Addressing and Commands
The SMBus protocol uses a 7-bit device addressing and will be used for recovery. In addition,
an 8-bit command byte is defined in the block read/write commands. A compliant device MUST
support the required commands using SMB block read and write interface.

Several other protocols/standards which use block read and write commands for various
functions. The following is a list of considered standards.

● DMTF MCTP over SMBus transport (v 1.0.0)
○ This specification reserves command 16 (0x0F)

● NVMe-MI OOB basic management interface (v1.2)
○ This specification reserves commands 0, 8 and 32

● OCP NVMe Cloud SSD Specification (v1.0)
○ Section 10.2 command 0, 8, 32, 50, 90, 96, 154, 242, 248

This specification does not overlap or conflict with command allocation from these standards.
Therefore, a compliance device can implement the recovery interface and be compatible with
these standards on the same interface. Care must be taken to ensure future compatibility with
these standards.

Interface Sharing/Isolation
SMBus is a multi-master protocol without fair arbitration. Device firmware could cause a
denial-of-service to the recovery interface by mastering transactions that win arbitration in
perpetuity. This would prevent the RA from issuing a device reset or forced recovery commands.
To mitigate this a device SHOULD disable SMBus mastering out of power-on. Bus Mastering
can be enabled via device specific means OR by using the interface master enable.

For devices which support interface isolation, it MUST report interface isolation in the
PROT_CAP command. For capable devices, the power up condition MUST be disabled
mastering in the isolation field of the DEVICE_RESET register. The RA MUST enable
mastering, in the DEVICE_RESET register, when it determines the device is healthy. Note:
MCTP notification will fail if mastering is not enabled.

Recovery Interface Commands
This section describes the command defined for the recovery interface. It is described as a
generic block read and write protocol with a command byte. Not all commands are required to
be implemented and it is up to the RA to determine which ones are available via the
PROT_CAP command. All commands and fields are specified in little-endian format.

20

Error Handling/Unsupported Features
There are several errors which can occur in the protocol. The PROTOCOL_ERROR field in the
device status register is used to indicate these errors. Reading the device status register will
clear the PROTOCOL_ERROR field. Note: the PROTOCOL_ERROR is a clear on read field.

● An unsupported command to a device MUST set an unsupported error condition in the
DEVICE_STATUS. This includes all optional commands.

● A device which receives (write) commands with unsupported parameters (e.g. local
c-image selection when the device it is not supported) MUST generate an ‘unsupported
parameter’ error in the DEVICE_STATUS registers.

● A device which receives (write) with an incorrect number of bytes MUST generate an
‘length write error’ error in the DEVICE_STATUS registers.

● A device which receives (write) with an invalid checksum (e.g. PEC) MUST set the CRC
error in the DEVICE_STATUS.

● Writing to a read only command (e.g. PROT_CAP) MUST generate an ‘unsupported
command’ error in the DEVICE_STATUS.

Command Summary

Recover Capabilities Command

Command r/w bytes Description Req

PROT_CAP
cmd=34

ro 15 Recovery protocol magic string
Byte 0-7: Magic string “OCP RECV” in ASCII code - “4f 43 50 20 52 45 43 56”

Recovery protocol version
Byte 8: Major version number = 0x1
Byte 9: Minor version number = 0x0

Recovery protocol capabilities
Byte 10-11: Agent capabilities
BIT 0: Identification (DEVICE_ID structure)
BIT 1: Forced Recovery (From RESET)
BIT 2: Mgmt reset (From RESET)
BIT 3: Device Reset (From RESET)
BIT 4: Device status (DEVICE_STATUS)
BIT 5: Recovery memory access (INDIRECT_CTRL)
BIT 6: Local C-image support
BIT 7: Push C-image support
BIT 8: Interface isolation
BIT 9: Hardware status
Bit 10: Vendors command
BIt 11-15: Reserved
Byte 12 (0-255): The total number of component memory space (CMS) regions a device
supports. This number includes any logging, code and vendor defined regions

Y

21

Describes the maximum amount of time an operation can take. A device SHOULD not take
more than 100 ms to respond to an operation.
Byte13: Maximum Responses Time
0-255: Maximum response time in 2x microseconds (us).
Byte14: Heartbeat Period
0-255:: Heartbeat period:n 2x microseconds (us) - 0 indicates not supported

Mandatory capabilities are:
● DEVICE_ID
● DEVICE_STATUS
● Local C-image OR Push C-Image
● INDIRECT_CTRL if Push C-Image

The device identifier is used to identify the type of device. This DEVICE_ID command is designed to
retrieve data to construct the device identifier record per the DMTF Firmware update standard.

Command r/w bytes Description Req

ID Device Identification

DEVICE_ID
cmd=35

ro 24-
255

Number of bytes available for each of the following IDs:
Byte 0: Initial Descriptor Type:- Based on table 8 from [DMTF PLDM FM]
0x00: PCI Vendor
0x1: IANA
0x2: UUID
0x3: PnP Vendor
0x4: ACPI Vendor
0x5: IANA Enterprise Type
0x6-0xE: Reserved
0xFF: NVMe-MI
Byte 1: Vendor Id String Length
0-0xFF: length of Vendor String . 0 indicates not supported
For PCI Type:
Byte 2-3: PCI Vendor ID
Byte 4-5: PCI DeviceID
Byte 6-7: PCI Subsystem Vendor ID
Byte: 8-9: PCI Subsystem ID
Byte: 10: PCI Revision ID
Byte: 11-23: 0x0 (PAD)
For UUID type:
Byte: 2-17: UUID assigned to the device
Byte: 18-23: 0x0 (PAD)
For IANA type:
Byte: 2-5: IANA Enterprise ID
Byte: 6-17: ACPI Product Identifier
Byte: 18-23: 0x0 (PAD)
For PnP type:

Y

22

Byte: 2-4: PnP Vendor Identifier
Byte: 5-8: PnP Product Identifier
Byte: 9-23: 0x0 (PAD)
For ACPI type:
Byte: 2-5: ACPI Vendor Identifier
Byte: 6-8: Vendor Product Identifier
Byte: 9-23: 0x0 (PAD)
For NVME-mi
Byte: 2-3 Vendor ID
Byte: 4-23: Device Serial Number
Vendor Specific String:
Vendor Specific String
Byte:24-254 - ASCII encoded string

Command r/w bytes Description Req

STATUS Device Status - Accumulated device status

DEVICE_STATUS
cmd=36

ro 7-255 Byte 0: Device status
0x0: Status Pending (Recover Reason Code not populated)
0x1: Device healthy (Recover Reason Code not populated)
0x2: Device Error (“soft” error or other error state) - (Recover Reason Code not populated)
0x3: Recovery mode - ready to accept recovery image - (Recover Reason Code populated)
0x4: Recovery Pending (waiting for device/platform reset) - (Recover Reason Code
populated)
0x5: Running Recovery Image (Recover Reason Code not populated)
0x6-0xD: Reserved
0xE: Boot Failure (Recover Reason Code populated)
0xF: Fatal Error (Recover Reason Code not populated)
0x10-FF:Reserved
Byte 1: Protocol Error (Clear on Read)
0x0: No Protocol Error
0x1: Unsupported/Write Command - command is not support or a write to a RO command
0x2: Unsupported Parameter
0x3: Length write error (length of write command is incorrect)
0x4: CRC Error (if supported)
0x5-0xFF: Reserved
Byte 2-3: Recovery Reason Codes - See table 3
Byte 4-5: Heartbeat
0-4095 - Incrementing number (counter wraps)
Byte 6: Vendor Status Length
0-248: Length in bytes of just VENDOR_STATUS. Zero indicates no vendor status and zero
additional bytes.
Byte:7-254: Vendor Status (if vendor length is non-zero)
Vendor defined status message

Y

23

There are various conditions where the reason code is populated. The goal is to describe why the
device failed to boot or entered recovery mode. The following table describes the source of the
recovery reason code in different device status/states.

Table 2 - Recovery Reason Code Population

Device Status/State Valid Source of Recovery
Reason Code

Notes

Status Pending N None Device is booting or has not yet
populated the reason code

Device healthy N None

Device Error N None

Recovery Mode Y Previous boot Device has entered recovery based on
forced recovery, or error in the previous
boot.

Recovery Pending Y Previous boot Device has entered recovery based on
forced recovery, or error in the previous
boot.

Boot Failure Y Current Boot Device current boot is halted. The
reason is defined in the recovery
reason code.

Fatal Error N None

Recovery reason codes are defined in the following table. The RCV column indicates if the device can
be recovered based on error code (Y-yes, N-no, M-possible).

24

Table 3 - Recovery Reason Codes

Code Description RCV

0x0 No Boot Failure detected (BFNF) N

0x1 Generic hardware error (BFGHWE) N

0x2 Generic hardware soft error (BFGSE) - soft error may be recoverable M

0x3 Self-test failure (BFSTF) (e.g., RSA self test failure, FIPs self test failure,, etc.) M

0x4 Corrupted/missing critical data (BFCD) M

0x5 Missing/corrupt key manifest (BFKMMC) Y

0x6 Authentication Failure on key manifest (BFKMAF) Y

0x7 Anti-rollback failure on key manifest (BFKIAR) Y

0x8 Missing/corrupt boot loader (first mutable code) firmware image (BFFIMC) Y

0x9 Authentication failure on boot loader (1st mutable code) firmware image (BFFIAF) Y

0xA Anti-rollback failure boot loader (1st mutable code) firmware image (BFFIAR) Y

0xB Missing/corrupt main/management firmware image (BFMFMC) Y

0xC Authentication Failure main/management firmware image (BFMFAF) Y

0xD Anti-rollback Failure main/management firmware image (BFMFAR) Y

0xE Missing/corrupt recovery firmware (BFRFMC) Y

0xF Authentication Failure recovery firmware (BFRFAF) Y

0x10 Anti-rollback Failure on recovery firmware (BFRFAR) Y

0x11 Forced Recovery (FR) Y

0x12 – 7F Reserved NA

0x80 - FF Vendor Unique Boot Failure Codes NA

0x0100-0xFFFF reserved NA

Command r/w bytes Description Req

DEVICE_RESET Reset Control - combinations Reset, Recovery and Activate are possible

RESET
cmd=37

rw 3 Reset control - For devices which support reset, this register will reset the device or
management entity.
Byte 0: Device Reset Control (Write 1 Clear e.g., after action device starts 0x0)
0x0: No reset
0x1: Reset Device (PCIe PRESET or equivalent. This is likely bus disruptive)
0x2: Reset Management. This reset will reset the management subsystem. If supported,
this reset MUST not be bus disruption (cause re-enumeration)
0x3-FF: Reserved Mode
Byte 1: Forced Recovery
0x0 - No forced recovery
01-E - Reserved

N

25

0xF - Enter recovery mode on next platform reset
0x10-FF: Reserved
Byte 2: Interface Control
0x0: Disable Interface mastering
0x1: Enable Interface mastering

Example device reset commands (starting with byte 0):
● Write: 0x02, 0x0F, 0x00 - device will management reset AND enter forces recovery AND disables

interface mastering
● Write: 0x00, 0x0F, 0x00 - device will enter recovery on next platform reset AND disables

interface mastering
Interface control is used to enable target initiated transactions (e.g., Bus mastering in SMBus). The
device must power-on to mastering disabled and the bus configuration solely managed by the RTRec.
Otherwise the DEVICE_RESET command is subject to denial-of-service attacks by device components
outside of the RTRec (e.g., management controller).

Command r/w bytes Description Req

RECOVERY

RECOVERY_CTRL
cmd=38

rw 3 Recovery configuration/ctrl
Selects the memory region address used for recovery. This region must be a code region.
Byte 0: Component Memory Space (CMS)
0-255: Selects a component memory space where the recovery image is. 0 is the default
Byte 1: Recovery Image Selection
0x0: No operation
0x1: Use Recovery Image from memory window (CMS)
0x2: Use Recovery Image stored on device (C image)
0x3-FF: reserved
Byte 2: Activate Recovery Image (Write 1 Clear)
0x0 - do not activate recovery image - after activation device will report this code.
01-E - Reserved
0xF - Activate recovery image
0x10-FF-reserved

Y

RECOVERY_STATUS
cmd=39

ro 2 Recovery status: Recovery Debug status of device
Byte 0: Device recovery status
Bit [7:0]:

0x0: Not in recovery mode
0x1: Awaiting recovery image
0x2: Booting recovery image
0x3: Recovery successful
0xc: Recovery failed
0xd: Recovery image authentication error
0xe: Error entering Recovery mode (might be administratively disabled)
0xf: Invalid component address space
0x10-FF: Reserved

Y

26

Byte 1: Vendor specific status
Bit [7:0]: Vendor Defined

Command r/w bytes Description Req

HW_STATUS

HW_STATUS
cmd=40

ro 4-255 Byte 0: HW Status (bit mask active high)
bit 0: Device temperature is critical
bit 1: Hardware Soft Error (may need reset to clear)
bit 2: Hardware Fatal Error
bit 3-7:Reserved

Byte 1: Vendor HW Status (bit mask active high)
bit 0-7: Vendor Specific

Byte 2: Composite temperature (CTemp) - Current temperature of device in degrees
Celsius: Compatible with NVMe-MI command code 0 offset 3.
0x00-0x7e: 0 to 126 C
0x7f: 127 C or higher
0x80: no temperature data, or data is older than 5 seconds
0x81: temperature sensor failure
0x82-0x83: reserved
0xc4: -60 C or lower
0xc5-0xff: -1 to -59 C (in two’s complement)

Byte 3: Vendor Specific Hardware length (bytes)
0-251: Length in bytes of HW_VENDOR structure.

Vendor Specific Hardware Status
Byte 4-254

N

Command r/w bytes Description Req

INDIRECT This is the interface to memory regions within the device

INDIRECT_CTRL
cmd=41

rw 6 Indirect memory access configuration.
This register selects a region within the device. Read/write access is through address
spaces. Each space represents a location in memory which is described by the config
register. The INDIRECT_OFFSET can be used to access certain offsets within an address
space.

Byte 0: Component Memory Space (CMS)
0-255 - Address region within a device.

N

27

Indirect memory configuration:
Byte 1: Reserved
Byte 2:5 Indirect memory offset (IMO)
Writes and reads via INDIRECT_DATA will auto-increment this offset by the number of
bytes written/read. The offset must be 4-byte aligned (e.g, the lower 2-bit are always zero).
Writes and reads that are not 4-byte multiples will increment to the next 4-byte offset.
Note: IMO can be read to determine the number of bytes read or written since last
initialization (write to this register).

INDIRECT_STATUS
cmd=42

ro 6 Byte 0: STATUS (bit mask) - (clear on read)
bit 0: Overflow CMS wrapped
bit 1: Read Only Error - write to a RO (log area)
bit 2: ACK from device in a polling address space
Note: The RA MAY poll with a timeout. The device MUST respond within Maximum
Responses Time reported in the PROT_ID command. If the timeout expires, then the RA
must read RECOVERY_STATUS
bit 3-7: Reserved
Byte 1: Type of region:
0bP000: Code space for recovery. (read/write)
0xP001: Log uses the defined debug format (read only)
0bP101: Vendor Defined Region (read/write)
0xP110: Vendor Defined Region (read only)
0xX111: Unsupported Region (address space out of range)
If P is set, polling is required for this region. That is, the ACK must be set before the next
indirect operation
Byte 2-5: INDIRECT SIZE - size of memory window specified (by CMS in the
INDIRECT_CTRL component and type) in 4B units

N

INDIRECT_DATA
cmd=43

rw 1-255 Indirect memory access to address space configured in INDIRECT_CTRL at offset specified
in INDIRECT_OFFSET.

Note: The length of the transfer does not need to be 4-byte aligned, but the IMO will be
auto-incremented to the next 4-byte offset, so data size should be 4-byte aligned for
contiguous access.

N

Command r/w bytes Description Req

VENDOR Vendor defined command

VENDOR
cmd=44

rw 1-255 Vendor Defined N

Protocol Conformance Checklist/Statement
The following table is used to describe a device compliance to the recovery protocol.

28

Table 4 - Recovery Protocol Compliance Statement

Feature Description Compliance

PROT_CAP
mandatory

Mandatory capabilities: DEVICE_ID, DEVICE_STATUS, Local or Push
C-image, INDIRECT if push C-image

PROT_CAP
optional

Optional capabilities: forced recovery, mgmt_reset,
hardware status, recovery_memory access,
heartbeat

PROT_CAP Response time Xx ms

PROT_CAP Protocol version {0x1, 0x0}

PROT_CAP Heartbeat support Yes or No

PROT_CAP Heartbeat period values Xx seconds

PROT_CAP Recovery image type Push, local, both

PROT_CAP CMS Support Yes or No

PROT_CAP Device Bus Isolation Yes or No

DEVICE_ID Supported Device ID format PCI Vendor, IANA, UUID, PnP Vendor, ACPI
Vendor, or NVMe-MI

DEVICE_ID Vendor specific string Value and length

DEVICE_STATUS Recovery Reasons codes Enumerate supported reasons codes from
table 3

DEVICE_STATUS Vendor Status Supported? Length and description

DEVICE_RESET Management reset support Yes or No

DEVICE_RESET Device reset support Yes or No

DEVICE_RESET Forced recovery support Yes or No

RECOVERY_CTRL Recovery Status support Yes or No

HW_STATUS HW status support Yes or No

HW_STATUS Vendor HW Status Yes or No, description if yes

HW_STATUS Composite temperature support Yes or No

INDIRECT Indirect Access command support Yes or No

INDIRECT Number and size of CMS code spaces 0-255, 0 – 4GB

29

INDIRECT Number of CMS log spaces 0-255, 0-4G

INDIRECT Number of Vendor CMS code spaces 0-255, 0-4G

INDIRECT Number of Vendor CMS log spaces 0-255, 0-4G

INDIRECT Is polling required for any CMS Yes or No

VENDOR Is vendor defined command supported Yes or No, description if yes

SMBUS Speed classes supported 100K, 400K, 1M

SMBUS PEC support Yes or No

SMBUS ARP support Yes or No

SMBUS Fixed address support Yes or No, is this device configurable?

The following is a list of tests which SHOULD be performed to demonstrate compliance to this
protocol. The list is not exhaustive, but is designed to give implementer guidance from the authors as
to the important or non-obvious parts of the protocol.

Table 5 - Recovery Protocol Error/Test

Test Description Compliance

Unsupported
commands

Read and write using unsupported
commands

Verify protocol error and COR behavior

Read Only Write to read only commands Verify protocol error and COR behavior

Write Error Write a command with an incorrect
number of bytes

Verify protocol error and COR behavior

Write PEC error If supported write using an incorrect PEC Verity correct SMBus behavior and Verify
protocol error

Device Status Read device status while device is not
ready

The device must report pending in the device
status register.

Glossary and Abbreviations
See Glossary and Abbreviations

30

https://docs.google.com/document/d/1NaWTRfXgNTiRzp8EnsYKjudo3z2lrdDK0dPyqer0DgU/edit

Relevant standards, guidelines, and documents
[1] NIST Special Publication 800-155 (DRAFT), BIOS Integrity Measurement Guidelines
[2] NIST Special Publication 800-193, Platform Firmware Resiliency Guidelines
[3] Open Compute Project, Project Cerberus Firmware Update Specification
[4] SMBus 3.1 Specification
[5] OCP Attestation of System Components v1.0 Requirements and Recommendations
[6] NVM-Express-Management-Interface-1.2a
[7] DMTF PLDM for Firmware Update DSP0267_1.1.0.pdf (dmtf.org)
[8] OCP NVMe Cloud SSD Specification (v1.0)

License
OCP encourages participants to share their proposals, specifications and designs with the community.
This is to promote openness and encourage continuous and open feedback. It is important to
remember that by providing feedback for any such documents, whether in written or verbal form, that
the contributor or the contributor's organization grants OCP and its members irrevocable right to use
this feedback for any purpose without any further obligation.

It is acknowledged that any such documentation and any ancillary materials that are provided to OCP
in connection with this document, including without limitation any white papers, articles,
photographs, studies, diagrams, contact information (together, “Materials”) are made available under
the Creative Commons Attribution-ShareAlike 4.0 International License found here:
https://creativecommons.org/licenses/by-sa/4.0/, or any later version, and without limiting the
foregoing, OCP may make the Materials available under such terms.

As a contributor to this document, all members represent that they have the authority to grant the
rights and licenses herein. They further represent and warrant that the Materials do not and will not
violate the copyrights or misappropriate the trade secret rights of any third party, including without
limitation rights in intellectual property. The contributor(s) also represent that, to the extent the
Materials include materials protected by copyright or trade secret rights that are owned or created by
any third-party, they have obtained permission for its use consistent with the foregoing. They will
provide OCP evidence of such permission upon OCP’s request. This document and any "Materials" are
published on the respective project's wiki page and are open to the public in accordance with OCP's
Bylaws and IP Policy. This can be found at

http://www.opencompute.org/participate/legal-documents/.
If you have any questions please contact OCP.

31

https://csrc.nist.gov/publications/detail/sp/800-155/draft
https://csrc.nist.gov/publications/detail/sp/800-193/final
https://github.com/opencomputeproject/Project_Olympus/tree/master/Project_Cerberus
http://smbus.org/specs/SMBus_3_1_20180319.pdf
https://docs.google.com/document/d/1fzBnA6N9vGYj--Mxit9Whp0TPPyGqgOyBlHdgCN9F_Q/edit#heading=h.dqa6986rrbrb
https://nvmexpress.org/wp-content/uploads/NVM-Express-Management-Interface-1.2a-2021.07.22-Ratified.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0267_1.1.0.pdf
https://www.opencompute.org/documents/nvme-cloud-ssd-specification-v1-0-3-pdf
https://urldefense.proofpoint.com/v2/url?u=https-3A__creativecommons.org_licenses_by-2Dsa_4.0_&d=DwMFaQ&c=jf_iaSHvJObTbx-siA1ZOg&r=BqFCxDNyAJevHgEgYwZw0rORaVubZcDFycdZwrbjoCM&m=aUYQryq43waZK3h9DIgMN14XrhMhbo_6Ht75yJW-Q8U&s=RhUxk6cjNzY_kGHJDCD2C7NRTSjWqbkWY5_Uw5aOKqs&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__www.opencompute.org_participate_legal-2Ddocuments_&d=DwMFaQ&c=jf_iaSHvJObTbx-siA1ZOg&r=BqFCxDNyAJevHgEgYwZw0rORaVubZcDFycdZwrbjoCM&m=aUYQryq43waZK3h9DIgMN14XrhMhbo_6Ht75yJW-Q8U&s=kIIJXCIbpOXyWf1GiaHJEjvGGeIcRyYOVHnjt5fjTXE&e=

About Open Compute Foundation
The Open Compute Project Foundation is a 501(c)(6) organization which was founded in 2011 by
Facebook, Intel, and Rackspace. Our mission is to apply the benefits of open source to hardware and
rapidly increase the pace of innovation in, near and around the data center and beyond. The Open
Compute Project (OCP) is a collaborative community focused on redesigning hardware technology to
efficiently support the growing demands on compute infrastructure. For more information about OCP,
please visit us at http://www.opencompute.org

32

http://www.opencompute.org/
http://www.opencompute.org

