
CMS: LOGICAL SYSTEM ARCHITECTURE
Version 1.0

Date: Oct 17, 2023

Author (s) :
Anjaneya Reddy Chagam, Intel Corporation

Reviewers (s):
Manoj Wadekar, Meta
Vikrant Soman, Uber
Siamak Tavallaei, Independent



PAGE 2

Executive Summary

This document defines the Open Compute Project (OCP) Composable Memory Systems (CMS) Logical
Architecture. CMS is an emerging paradigm that facilitates dynamic and unified memory management
across diverse memory technologies, interconnects, and hierarchies. The CMS logical system
architecture serves as a vital reference point for system designers, data center operators, and end
customers as they navigate the landscape of commercial implementations. This entails selecting an
ideal combination of host processor platforms, memory devices, chassis configurations, and rack
setups. The initial CMS logical architecture primarily targets general-purpose applications running on
CPUs and employs CXL interconnects to enable pooled memory use-cases.



PAGE 3

Table of Contents

1. Compliance with OCP Tenets 4
1.1 Openness 4
1.2 Efficiency 4
1.3 Impact 4
1.4 Scale 4
1.5 Sustainability 4

2. Introduction 4
3. CMS Logical System Architecture 7

Direct Attached 8
Direct Attached using a transport other than CXL/PCIe Physical Layer 9
Multi-Headed 9
Fabric 10
Network 11
Data Center Memory Fabric Manager (DCMFM) 11

4. Memory Buffer Provisioning 12
5. Memory Management 13
6. Conclusion 15
7. Glossary 16
8. References 17
9. License 18
10. About Open Compute Foundation 19



PAGE 4

1. Compliance with OCP Tenets

1.1 Openness

The OCP CMS Logical System Architecture was developed in dialogue with the entire OCP CMS
community membership and the resulting document represents the initial logical architecture. CMS
usage models are nascent, so this document will evolve over time, and that this architecture
document represents the wisdom of the collective ecosystem on the deployment scenarios for
creating CXL based composable memory systems.

1.2 Efficiency

The OCP CMS Logical System Architecture lays the foundation for developing CMS physical
architecture for various deployments highlighting hardware/software co-design.

1.3 Impact

Having a common foundational logical architecture helps us to guide CMS workstream scope and
follow consistent architecture to develop future white papers, specifications, case studies and vendor
reference implementations.

1.4 Scale

CMS Logical System Architecture fosters consistent vendor neutral composable solutions and enables
high degree of reusability using open eco-system software, hardware form factor specifications and
best practices.

1.5 Sustainability

CMS software and hardware co-design solutions are designed to optimize performance and resource
utilization for underlying physical memory technologies thereby achieving data center energy
efficiency.



PAGE 5

2. Introduction

In a rapidly expanding enterprise and hyperscale market, the role of memory has become increasingly

crucial. Data-intensive applications like Artificial Intelligence (AI), Machine Learning (ML), and

databases are pushing the boundaries of server performance. Newer memory technologies,

interconnects, and hierarchies that promise enhancedmemory bandwidth, capacity, increased

throughput, improved data sharing, and greater scalability, all catering to the demands of these

data-intensive applications. These hardware innovations are designed to optimize performance and

resource utilization for underlying physical memory technologies.

The rise in ever-growing computational performance is driving the demand for greater memory

performance, while diverse application categories require heightenedmemory capacity to overcome

platform limitations. Design engineers are actively seeking balanced system solutions that harness the

potential of new technologies, products, and software capabilities to enable these applications to

leverage memory technologies to the fullest. The advent of new hardware, software solutions, and

memory abstractions is expected to unlock novel value propositions for memory use-cases, pushing

the boundaries of location transparency, automated tiering across hybrid memory technologies, and

the realization of pooled capacities with unified namespaces.

In Figure 1 below, we illustrate the interaction of general-purpose software applications running on

CPUs or specialized applications like AI operating on GPUs, both of which rely on load/store memory

access semantics. The concept of "near memory" refers to memory that is closest to the CPU/GPU,

including elements such as in-package High-Bandwidth Memory (HBM) and host system DRAM

connected to local or remote sockets. Conversely, "far memory" resides farther away from the

CPU/GPU and encompasses memory buffers with Compute Express Link (CXL) connected DRAM,

Storage Class Memory (SCM), compressedmemory pages in block devices, or pooled memory

distributed over CXL fabrics. To optimize performance, frequently accessed data is typically stored in

near memory, while less frequently accessed data is relegated to far memory.



PAGE 6

Figure 1: CMS Memory Hierarchy - Logical View

CMS is an emerging paradigm that facilitates dynamic and unified memory management across

diverse memory technologies, interconnects, and hierarchies. This approach addresses the complex

demands of memory performance, capacity, latency, throughput, data sharing, scalability, and

security posed by emerging applications, all without requiring a server reboot. The CMS logical system

architecture serves as a vital reference point for system designers, data center operators, and end

customers as they navigate the landscape of commercial implementations. This entails selecting an

ideal combination of host processor platforms, memory devices, chassis configurations, and rack

setups. The initial CMS logical architecture primarily targets general-purpose applications running on

CPUs and employs CXL interconnects to enable pooled memory use-cases.



PAGE 7

3. CMS Logical System Architecture

CMS logical architecture includes abstractions and interfaces between the various hardware and

software components required to implement composable memory systems targeted for diverse use

cases such as virtualization, caching/databases and AI/ML. A key enabler in CMS architecture is the

Compute Express Link (CXL), an open and industry-supported cache-coherent interconnect designed

to facilitate seamless communication among processors, memory expansion resources, and

accelerators. CXL introduces memory expansion capabilities using load/store memory semantics,

specifically through the cxl.mem protocol, which interfaces with the host system and the underlying

operating system or hypervisor runtime. In addition, CXL.io provides device and fabric control plane

management that can be used to integrate into data center orchestration for data center fleet

management.

The CMS Logical Architecture in Figure 2 below illustrates five distinct types of composable system

solutions that harness the data plane capabilities of CXL.mem and the control plane abstractions

provided by the CXL standard. These solutions encompass: 1) Direct Attached, 2) Multi-Headed, 3)

Fabric, and 4) Network configurations, and 5) Direct-attached using a transport other than CXL/PCIe

physical layer. Each of these configurations tailors the composable memory system to specific use

cases and requirements.



PAGE 8

Figure 2: CMS Logical System Architecture

Direct Attached

This represents the most straightforward memory expansion capability, wherein a CXL device is

directly linked to the host platform, exclusively serving the host it's physically connected to. CXL

memory buffers can utilize a variety of memory technologies like DDR4, DDR5, HBM, or SCM. The

management of a CXL device can be achieved through an in-band agent within the host or through

out-of-band protocols using a management controller. The choice of the preferred management

method for CXL device management is left to system vendors. A CXL memory buffer exposes

host-managed device memory (HDM). Host firmware maps HDMmemory to the system's coherent

address space, facilitating access from the host using standard write-back memory semantics. HDM

memory can be configured by host firmware as either special-purpose memory or conventional

memory.

During boot time, the Operating System kernel configures CXL HDM special-purpose memory as a DAX

(Direct Access) device. DAX command-line utilities allow promotion and demotion of memory in and

out of kernel-managedmemory once the operating system is booted. Conventional memory is



PAGE 9

provisioned as kernel-managedmemory in either scenario. CXL HDM regions are presented as

memory-only NUMA domains. The Operating System or Application Software is expected to

comprehend the CXLmemory's capacity, bandwidth, and latency attributes within the CXL tier and

implement efficient tiering algorithms for effective data movement between host and CXLmemory

regions.

Direct Attached using a transport other than CXL/PCIe Physical Layer

This use case extends the same logical architectural abstraction as the Direct-attached for transports

other than CXL physical layer. Examples include UCIe, HBM3, Photonics for Memory Extension (placing

memory in a suitable physical location by lengthening the distance between the Host/Accelerator and

memory), Memory Expansion (providing larger memory footprint via different media types and

benefiting frommemory-tiering concepts), and Memory Pooling/Sharing.

The management of a CXL device will be achieved through the same in-band or out-of-bandmethods

as described elsewhere in this paper. In this model, a non-CXL memory buffer will expose

host-managed device memory (HDM). Host firmware maps HDMmemory to the system's coherent

address space, facilitating access from the host using standard write-back memory semantics. HDM

memory can be configured by host firmware as either special-purpose memory or conventional

memory.

Multi-Headed

Themulti-headed CXL buffer provides physical connectivity to multiple hosts, thereby enabling the

pooling and shared utilization of memory resources among these hosts. CXL provides logical

abstractions to dynamically allocate memory to hosts based on specific workload requirements. In

cases where the samememory region is made accessible to multiple hosts, ensuring cache coherency

becomes a responsibility shared among the host, software, and/or the associated device. Using the

same logical abstraction, this multi-headed use case may be extended to “Direct-attached using a

different transport” case as well.



PAGE 10

Figure 3: Example Multi-headed Memory Controller within a Switch-connected Fabric

Fabric

In contrast to the preceding deployment approaches, CXL memory buffers reside behind the CXL

switch. The CXL switch connects to multiple hosts and offers the capability to dynamically provision

memory to these hosts. Memory is allocated andmade available to the hosts in a dynamic manner.

The physical mapping and accesses to the actual CXL device are managed by the CXL switch(es). As

shown in the picture below, the CXL fabric's complexity can range from a straightforward single switch

with multi-host connectivity to complicated hierarchical fabric topologies. This deployment model

facilitates pooling and sharing, akin to the multi-headed approach, but with enhanced fan out and

improved host connectivity. The fabric manager can be integrated within the switch, implemented in

the management controller or as a software agent running on any orchestrator host. In a multi-rack

setup, the fabric manager enables dynamic memory provisioning based on workload demands by

integrating with CXL fabric manager agents deployed throughout the data center.



PAGE 11

Figure 4: Example CXL switch deployment models

Network

In this deployment configuration, CXL memory is accessed by the host via memory transport over the

network. Unlike the prior deployment model, direct connectivity to the host is not established. While

this model allows for greater fan-out and accessibility across multiple racks, it comes at the cost of

increased latency. Software coherence models may work better in this network-connected

configuration.

Data Center Memory Fabric Manager (DCMFM)

The Data Center Memory Fabric Manager (DCMFM) serves as a vital logical component for memory

orchestration. Its primary role involves overseeing the life cycle of memory resources and optimizing

the utilization of memory infrastructure within the data center. This software element handles various

tasks, including discovery, monitoring, provisioning, and deprovisioning of memory resources within

the data center environment. Illustrated in the CMS Logical Diagram earlier, the DCMFM operates as



PAGE 12

the control plane, responsible for managing critical memory infrastructure components like Memory

buffers, CXL Switches/Fabric, andmemory enclosures.

The DCMFM oversees andmanages memory bandwidth, capacity, and dynamically adjusts the

memory fabric configuration based on the workload requirements defined by the orchestrator. It has

the capability to seamlessly integrate with advanced orchestration systems like Kubernetes, offering a

centralized interface for administrators to establish and enforce policies, allocate resources, and

govern the behavior of the memory fabric.

Additionally, the DCMFM holds a critical function in elevating security through the implementation of

access controls andmonitoring memory usage. It actively contributes to enhancing the

comprehensive performance, scalability, and adaptability of the data center, in line with the evolving

requirements of data center services.

The DCMFM communicates with physical memory devices through a DCMFM agent, which can be

either software or firmware-based and supports both in-band and out-of-bandmodes. Interaction

with the agent is facilitated through REST APIs (such as DMTF Redfish CXL models). The agent

leverages the device's cxl.io and the Component Command Interface (CCI) to initiate control plane

operations on the CXL device. Additionally, the DCMFM implements high availability measures to

eliminate any single point of failure.

4. Memory Buffer Provisioning

This section describes the single host direct attached Single Logical Device (SLD)

memory buffer provisioning to outline typical steps involved in consuming CXLmemory buffer by the

operating system or application. The actual implementation process may vary based on factors such

as the CXL device type (memory buffer, type2 device, or switch), the capabilities of the device, support

for the CXL protocol, and the capabilities of the host processor. CXL memory buffer needs to have at

least one Host-managed Device Memory (HDM) so that device attachedmemory gets mapped to

system coherent address space and accessible from host using write-back semantics. CXL memory



PAGE 13

buffer can take on any of the industry-supported form factors for memory modules andmemory

expansion boards.

Illustrated in Figure 5, host firmware takes on the role of configuring various settings such as PCIe

bifurcation, interleaving, and DFx security related to PCIe and CXL. Additionally, it initiates link training

and configures device registers following the guidelines specified in the CXL specification. Once the

link training is successfully completed, the host firmware proceeds to configure ACPI tables, offering

visibility into CXL devices and their configurations to the host operating system. Depending on the host

firmware's configuration, the CXLmemory map can be set up as either Special Purpose

(EFI_MEMORY_SP) or Conventional (EFI_MEMORY_WB) memory. The operating system utilizes these

memory map attributes to appropriately configure the CXLmemory. Conventional memory is

designated as a memory-only NUMA domain by the operating system, while special purpose memory

is configured as a DAX (Direct Access) device. The ACPI SLIT table supplies NUMA distances, forming

the foundation for the kernel to promote and demote CXLmemory, alongside other ACPI tables like

HMAT.

Figure 5: CXL memory buffer provisioning

5. Memory Management

As depicted in the image below, the Kernel holds the responsibility of promoting and demoting data

between conventional memory and CXLmemory-only tiers based on the system admin's configured



PAGE 14

policies. Applications can utilize kernel-managedmemory without requiring any modifications. Fine

grainedmemory management can be achieved using kernel supported numa policies.

Special purpose memory is configured as a DAX device. Applications canmemory-map the DAX device

and directly consume the memory. Cachelib, an open-source software, is an example of an application

that supports native memory tiering and effectively manages CXL memory. Virtual machines are an

instance of applications capable of utilizing pass-through DAX devices to utilize memory within the

guest operating system. To fulfill memory allocation requests within DAXmemory regions,

applications may need to implement a customizedmemory allocator. System admins retain the

capability to promote and demote memory in and out of kernel-managedmemory for DAXmemory as

well.

Figure 6: CXL memory management



PAGE 15

6. Conclusion

The ever-expanding enterprise and hyperscale market have elevated the role of memory to a critical

level. Data-intensive applications like Artificial Intelligence (AI), Machine Learning (ML), and databases

are pushing the limits of server performance. To meet the demands of these applications, there has

been a surge in newer memory technologies, interconnects, and hierarchies that promise enhanced

memory capabilities such as increased bandwidth, capacity, throughput, data sharing, and scalability.

Composable Memory Systems (CMS) is an emerging paradigm that facilitates dynamic and unified

memory management across these diverse memory technologies, interconnects, and hierarchies. The

CMS logical system architecture serves as a vital reference point for system designers, data center

operators, and end customers as they navigate the landscape of commercial implementations. This

entails selecting an ideal combination of host processor platforms, memory devices, chassis

configurations, and rack setups.



PAGE 16

7. Glossary

Term/Acronym Definition

AI Artificial Intelligence

CXL Compute Express Link, a low-latency, high-bandwidth link that supports dynamic
protocol muxing of coherency, memory access, and I/O protocols, thus enabling
attachment of coherent accelerators or memory devices.

CCI Component Command Interface

CXL.io PCIe-based non-coherent I/O protocol with enhancements for accelerator support

CXL.mem Memory access protocol that supports device-attachedmemory.

DMTF Distributed Management Task Force

HBM High-Bandwidth Memory

HDM Host-managed Device Memory. Device-attachedmemory that is mapped to system
coherent address space and accessible to the Host using standard write-back
semantics.

HMAT Heterogeneous Memory Attribute Table as defined in ACPI Specification

ML Machine Learning

PCIe PCI Express

SLD Single Logical Device

SRAT System Resource Affinity Table as defined in ACPI Specification



PAGE 17

8. References

1. Compute Express Link (CXL) 1.1/2.0/3.0 specifications: https://www.computeexpresslink.org/

2. Compute Express Link (CXL™) Memory Module Base Standard JESD317 www.jedec.org

3. Redfish CXL Device Management Models Bundle

https://www.dmtf.org/documents/redfish-spmf/redfish-cxl-device-management-models-bun

dle-08wip

4. Cachelib open-source software: https://cachelib.org/

5. QEMU CXL device emulation: https://www.qemu.org/docs/master/system/devices/cxl.html

https://www.computeexpresslink.org/
http://www.jedec.org
https://www.dmtf.org/documents/redfish-spmf/redfish-cxl-device-management-models-bundle-08wip
https://www.dmtf.org/documents/redfish-spmf/redfish-cxl-device-management-models-bundle-08wip
https://cachelib.org/
https://www.qemu.org/docs/master/system/devices/cxl.html


PAGE 18

9. License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

OCP encourages participants to share their proposals, specifications and designs with the
community. This is to promote openness and encourage continuous and open feedback. It is
important to remember that by providing feedback for any such documents, whether in written or
verbal form, that the contributor or the contributor's organization grants OCP and its members
irrevocable right to use this feedback for any purpose without any further obligation.

It is acknowledged that any such documentation and any ancillary materials that are provided to
OCP in connection with this document, including without limitation any white papers, articles,
photographs, studies, diagrams, contact information (together, “Materials”) are made available
under the Creative Commons Attribution-ShareAlike 4.0 International License found here:
https://creativecommons.org/licenses/by-sa/4.0/, or any later version, and without limiting the
foregoing, OCPmaymake the Materials available under such terms.

As a contributor to this document, all members represent that they have the authority to grant the
rights and licenses herein. They further represent and warrant that the Materials do not and will
not violate the copyrights or misappropriate the trade secret rights of any third party, including
without limitation rights in intellectual property. The contributor(s) also represent that, to the
extent the Materials include materials protected by copyright or trade secret rights that are owned
or created by any third-party, they have obtained permission for its use consistent with the
foregoing. They will provide OCP evidence of such permission upon OCP’s request. This document
and any "Materials" are published on the respective project's wiki page and are open to the public
in accordance with OCP's Bylaws and IP Policy. This can be found at
http://www.opencompute.org/participate/legal-documents/. If you have any questions please
contact OCP.

http://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://www.opencompute.org/participate/legal-documents/


PAGE 19

10. About Open Compute Foundation
At the core of the Open Compute Project (OCP) is its Community of hyperscale data center operators, joined

by telecom and colocation providers and enterprise IT users, working with vendors to develop open

innovations that, when embedded in product are deployed from the cloud to the edge. The OCP

Foundation is responsible for fostering and serving the OCP Community to meet the market and shape the

future, taking hyperscale led innovations to everyone. Meeting the market is accomplished through open

designs and best practices, and with data center facility and IT equipment embedding OCP

Community-developed innovations for efficiency, at-scale operations and sustainability. Shaping the future

includes investing in strategic initiatives that prepare the IT ecosystem for major changes, such as AI & ML,

optics, advanced cooling techniques, and composable silicon. Learn more at www.opencompute.org.

http://www.opencompute.org

