

HARNESSING
PROGRAMMABLE SWITCH

SILICON USING NPL –
PACKET BROKER USE CASE

FEBRUARY 15TH 2022
AUTHORS: DANNY LOBO, RUSS ERIKSON, CLIFF LIN

NETSCOUT SYSTEMS, INC.

1 | P a g e This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
.

Table of Contents
Abstract ... 2

1 Introduction .. 2

2 Header Stripping ... 4

2.1 VLAN .. 4

2.2 MPLS.. 4

2.3 EtherType Replacement for MPLS Traffic ... 5

3 Tunnel Header Stripping ... 5

3.1 GRE .. 5

3.2 GTP .. 6

3.3 Generic Header Stripping .. 7

3.4 Load Balancing Limitation ... 7

4 Conditional Data Masking ... 8

5 Summary ... 12

6 References .. 12

7 License ... 13

2 | P a g e This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
.

Abstract
One of the key principles of OCP Networking has been the concept of disaggregation, where
organizations can build their value-added layers on top of open platforms and software. This
has led to the rapid proliferation of work in the Network Operating System (NOS) space over the
last several years, and we see this continuing as companies see how more product lines can be
based upon such open platforms.

In this white paper, we highlight Packet Brokers as the target network product category. Packet
Brokers, including those from NETSCOUT, are traditionally built on top of closed, custom
hardware that use FPGAs and require advanced packet conditioning features. Now, open,
disaggregated platforms such as those in the OCP architecture enable us to build Packet Brokers
on top of OCP switches with programmable merchant switching silicon. Specifically, NETSCOUT
used the open NPL (Network Programming Language) to develop a Packet Broker without the
use of FPGAs. We partnered with key vendors to successfully build a viable and working model
on top of the NPL emulator. Our next step is to move our emulation on top of a hardware switch
that support NPL, such as an existingTrident4-based OCP switch.

This project shows the impact that open, programmable OCP switches can have on the
development of specialized devices such as Packet Brokers. They can be developed in a fraction
of the time and built at a fraction of the cost as compared to closed, FPGA-based systems. They
create a "multiplier effect" within the community by leveraging chips and systems that are already
being deployed in the OCP networking community. We encourage other members of the
community to see how their own product lines can benefit from leveraging the latest open and
programmable OCP switches.

1 Introduction
NETSCOUT uses an Open Compute Project (OCP) switch platform for its Network Packet Broker. Packet
brokers have traditionally been built with closed custom hardware. The use of merchant silicon
switch chips with FPGAs enables advanced features, such as VLAN and MPLS header stripping,
de-encapsulation of tunneling protocols, advanced load balancing, and conditional data masking.
However, using custom hardware to build a packet broker has the same drawbacks as any custom
hardware implementation. Creating custom switch hardware requires a large hardware design and
manufacturing team, for example. Furthermore, the hardware design cycle is usually measured in
years. Even when a custom packet broker takes advantage of merchant switching silicon, the delay
from silicon introduction to final product completion can be very long. As a result, the end product
may not be complete until after the next generation of switching silicon is available, putting
custom hardware constantly a step behind the current state of the art.

3 | P a g e This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
.

Meanwhile, the rise of open networking and related efforts has resulted in open white box
switches offered by various vendors, and OCP switch platforms allow for rapid adoption of the
latest merchant switching silicon. Furthermore, combining OCP switch platforms with Open
Network Install Environment (ONIE) compatible packet broker software can result in packet
brokers that are both very cost-effective and able to take advantage of the latest developments
in switching hardware technologies. However, the feature set of such OCP-based packet brokers
is limited to the feature set of the underlying switch hardware. There is no provision for
customization of the hardware to include features that may be unique to packet broker
applications or were previously available through closed proprietary FPGA implementations.

While still using OCP switch platforms, one approach to deliver advanced packet broker features
is to provide a server-based adjunct to the packet broker to offer advanced features via software
running on the server. The server can either be a generic server platform, such as an Open
Compute Project server, or a proprietary compute platform included in a proprietary chassis. Using
a software-based adjunct processor allows a great degree of flexibility in the feature set offered.
However, software-based solutions face extreme performance limitations. These performance
limitations can be reduced by using more powerful processors -- with a higher number of cores -
- but at a much greater cost.

Recently, merchant switching silicon includes mechanisms that allow customization of the
switching functions via direct programming of the switching logic. In addition, switch chip vendors
providing development environments for network programming languages such as P4 and NPL
have opened the door to customization of the switching logic to allow for advanced packet broker
features otherwise unavailable in the switch chips. This paper examines using NPL to implement
examples of advanced packet broker features.

Table 1 - Advanced Packet Broker Feature Options

 Performance Cost Flexibility Feature Set
Software Compute Based Lowest Highest Highest Full
FPGA Based Medium to High High Medium Full
Merchant Switch Silicon Highest Lowest Low Minimal
NPL Programmable Switch Silicon High Low High Nearly Full

NPL is an open high-level language for developing feature-rich solutions for programmable
network platforms. NPL is used to program the behavior of packets as they are processed by the
switch data plane, describing the behavior of the packets as they traverse a switch pipeline. NPL
uses a combination of programmable pipeline tables and intelligent function primitives to
describe this behavior. NPLang.org has provided a development emulation environment that
allows for prototyping and testing NPL programs without a switch. Using this emulator, we can

4 | P a g e This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
.

illustrate NPL implementations of advanced packet broker features, including advanced header
stripping, de-encapsulation, dynamic load balancing, and conditional data masking. We provide
examples of actual code, using the emulator, so other members of the community can build on
our examples and prove them out without requiring any investment in switching hardware.

2 Header Stripping
NPL can be used to remove headers from VLAN, MPLS, MPLS+VLAN, VN-Tag, VXLAN, ERSPAN,
GTP-U, GRE, 6in4, 4in6, or Cisco FabricPath packets before they are forwarded to network tools or
appliances. Removing these headers is useful when working with tools that either cannot
recognize these headers or must engage in excessive additional processing to adjust for them.

2.1 VLAN
A traditional switch may have a limitation on handling traffic that contains more than 2 VLAN tags
in the packet. Most packet brokers can only support 802.1Q and Q-in-Q VLAN headers. Similarly,
a packet broker based on a traditional switch chip may only be capable of supporting a well-
known Tag Protocol Identifier (TPID) like 0x8100 or 0x9100 – but not TPID (0x88A8) or a custom

TPID. The non-NPL-based switch may not
recognize or account for the additional tags to
be able to analyze the traffic encapsulated
inside VLANs. With NPL, a programmable
switch would support multiple VLAN tags and
configurable TPID, identifying the VLAN tags to
be stripped or to load balance on the user
session’s layer 3 and layer 4 headers.

In NPL, configurable TPID can be defined as a
logical register, as shown. It can be assigned
any custom TPID and as many values as
desired. As an NPL-based switch is fully
configurable, the number of VLAN tags in a
stack is only limited by the number of resources
committed to VLAN tag processing. The
number of stacked VLAN tags supported is

theoretically unlimited, but practically it would be the same as a typical PFGA based packet broker,
up to about eight.

2.2 MPLS
In the case of MPLS, a tool may have been designed for handling traffic that contains only one
MPLS label. In bridged or cross-provider networking where multiple MPLS labels can be present,
the tool may not recognize or account for the additional labels to analyze the traffic encapsulated

Figure 1 - TPID Example

5 | P a g e This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
.

inside MPLS. Most non-NPL-based switches can support a limited number of MPLS labels. An
advanced feature of a packet broker is to support multiple MPLS label stripping to filter and load
balance on the user session’s layer 3 and layer 4 headers.

2.3 EtherType Replacement for MPLS Traffic
EtherType Replacement for MPLS traffic becomes very interesting when MPLS IPv4-IPv6
coexistence. Unlike VLAN traffic, the layer 3 protocol type is not carried in the packet for an MPLS
packet. When MPLS stripping is enabled, most non-NPL switches have difficulty determining
which EtherType to insert, including 0x0800 for IPv4 or 0x86dd for IPv6. Most non-NPL switches
fail to support both IPv4 and IPv6 running over MPLS traffic coming to the same physical port.
With NPL, it is very simple to examine the IP version and the byte following the MPLS header and
determine whether the packet is IPv4/IPv6 and able to insert correct EtherType for outgoing
packets.

3 Tunnel Header Stripping
Monitoring, analysis, and security are often developed for targeted specific applications, and the
software and/or hardware implementations are not designed to handle certain protocols.

3.1 GRE
Generic Routing Encapsulation (GRE) is a tunneling protocol developed to encapsulate various
network-layer protocols inside a virtual connection. Often, when a tool has not been specifically
designed for handling GRE, it may not be able to either recognize GRE encapsulation or account
for the added tunnel headers. This results in the tool being unable to analyze the traffic
encapsulated inside GRE. However, an NPL-capable packet broker can be programmed to strip
the GRE tunnel headers to allow the tool to analyze the original packet. Stripping the GRE tunnel
headers consists of removing the outer IP header and the GRE header.

Similarly, Network Virtualization using GRE (NVGRE) leverages GRE encapsulation to tunnel layer
2 packets over layer 3 networks. NVGRE adds an outer L2 header, an outer IP header, and a GRE
header. To make the original packet available for analysis, an NPL-capable packet broker strips

Figure 2 - GRE Stripping

6 | P a g e This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
.

all three headers.

In NPL, the required L2/L3/GRE/L3/L4 headers are specified within ingress packets. During
egress packet processing, the relevant outer headers are removed before forwarding to the
egress port.

3.2 GTP
The GPRS (General Packet Radio Service) Tunneling Protocol (GTP) is defined by the 3GPP
standards group to transport GPRS traffic inside a 3G/4G network. Any tool not explicitly designed
to support cellular mobile communications networks may not recognize GTP or account for the
added GTP headers. Therefore, these tools may not be able to analyze traffic encapsulated inside
GTP. GTP-u packets are used to transport user data inside the core GPRS network. GTP tunnel
stripping removes the header and trailer for GTP-u packets inside the GTP tunnel between the

Figure 3 - NVGRE Striping

Figure 4 – GRE/NVGRE Header Stripping Example

Figure 5 - GTP Encapsulation Headers

7 | P a g e This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
.

SGSN and GGSN interfaces in a 3G network and between the eNodeB (eNb) and the SGW and
between the SGW and the PGW in an LTE network.

For NPL to remove the GTP headers, specify the required L2/L3/GRE/L3/L4 headers within received
packets. The L2/L3/L4 and GTP headers are removed before forwarding the packets to the egress
port.

3.3 Generic Header Stripping
Generic protocol header stripping would remove any arbitrary headers from a packet. The headers
are stripped based on the offset and the length of the header. Generic protocol stripping is one
of the most powerful features of using NPL. NPL can be configured with header offset and length
as pairs, allowing users to create multiple pairs of protocol headers that can be stripped from the
same packet before sending to an egress port.

3.4 Load Balancing Limitation
Typically, load balancing is done based upon a 5-tuple derived from layer 3 and layer 4 header
fields. Normal layer 3 and layer 4 flow-aware load balancing cannot account for the presence of
additional headers between layers 2 and 3. This is particularly true when there are multiple tags
or labels or encapsulation headers such as GRE or GTP-U. NPL can construct any type of protocol
headers and custom headers based on the feature requirement. Therefore, an NPL-based switch
can support any number of VLANs or MPLS tags, any encapsulation header, or any custom header
when processing packets. Any combination of tags and headers can be stripped from the packet
during processing from a user session’s layer 3 and layer 4 and beyond without difficulty.

Figure 6 - GTP Header Stripping

8 | P a g e This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
.

4 Conditional Data Masking
Data masking allows one or more fields within a packet to be hidden to protect sensitive
information. It is instrumental in concealing information like IP addresses, credit card information,
phone numbers, login names, or passwords. Data masking works by writing user-defined data
over existing data in the packet, effectively hiding the data that was initially in the packet. This
prevents any monitoring tools from storing or displaying sensitive information. This feature can
be combined with filters allowing only packets that match the filter condition, typically something
in the L2/L3/L4 headers, making the feature more flexible and powerful. The example below
illustrates how L3 Data Masking can be done based on L2 (VLAN VID) as a conditional matching
filter using NPL.

To correctly mask the data, the condition for masking the data must be provided along with the
location of the data within that packet. Four major user configurations are required to support
full data masking features.

Data Mask Conditional Filter Configuration

Any headers field or combination of header fields (L2/L3/L4) can be used as a conditional
filter. VLAN-VID is used here as an example.

Data Mask Offset Configuration

The data mask offset indicates where to look for the beginning of the data to be masked.
The offset can be made relative to a header field. Here, the end of the L3 header is used.

Data Mask Length Configuration

The data mask length is the number of bytes that the user wants to overwrite.

Data Mask Pattern Configuration

The data pattern is the value to be written into the selected data area.

Figure 7 - Example of Data Masking Parameters

9 | P a g e This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
.

In NPL, the required L2/L3/L4 headers are specified within received packets. NPL will then examine
those headers from the packet, based upon the filter matching condition, to modify the defined
masking area during egress packet processing.

NPL defines the format of the headers using struct definitions.

NPL defines a table which based upon a lookup of the header, results in a set of outputs called
the object bus. The object bus is broken into multiple fields which define the parameters for

Figure 8 - Header Fields within the Packet

Figure 9 - NPL Definition of Header Fields

10 | P a g e This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
.

performing the data masking: filter, pattern, offset, and length.

Conditional if/else code constructs are used to determine the actions based on the table lookup
results.

Figure 10 - Example Data Masking NPL Code

11 | P a g e This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
.

The NPL code processes an example packet. When the VID = 7 in the ingress packet, the egress
packet has the defined data mask filed overwritten with 0x59, as seen in the above example.

Figure11 - Example Data Masking Results

12 | P a g e This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
.

5 Summary
This paper has provided several examples of advanced packet broker features implemented in
NPL. The NPL code has been tested on the NPL emulator easily downloaded from NPL.org. In
the future we intend to demonstrate these same advanced features, written in NPL, running on
an OCP white box switch based on merchant switch silicon supporting NPL. The ability to
provide custom features though NPL programming on OCP switches, loading custom software
via ONIE, moves packet brokers closer to the ultimate goal of providing features, previously only
available through custom FPGA implementations, on off the shelf white box switches.

6 References
https://nplang.org/npl/blog

https://opennetworking.org/p4/

Network Programming Language Specification v1.3

https://nplang.org/npl/specifications/

 VLANs: IEEE 802.1Q-2014

https://www.ieee802.org/1/pages/802.1Q-2014.html

Multiprotocol Label Switching Architecture (MPLS) RFC3031
https://datatracker.ietf.org/doc/html/rfc3031

Generic Routing Encapsulation (GRE) RFC2784
https://datatracker.ietf.org/doc/html/rfc2784

3GPP Evolved Packet System; General Packet Radio Service Tunneling Protocol (GTP) TS 129
274-V15.4.0
https://www.etsi.org/deliver/etsi_ts/129200_129299/129274/15.04.00_60/ts_129274v150400p.pd
f

13 | P a g e This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
.

7 License

OCP encourages participants to share their proposals, specifications, and designs with the community.
This is to promote openness and encourage continuous and open feedback. It is important to
remember that by providing feedback for any such documents, whether in written or verbal form, that
the contributor or the contributor's organization grants OCP and its members irrevocable right to use
this feedback for any purpose without any further obligation.

It is acknowledged that any such documentation and any ancillary materials that are provided to OCP
in connection with this document, including without limitation any white papers, articles, photographs,
studies, diagrams, contact information (together, “Materials”) are made available under the Creative
Commons Attribution-ShareAlike 4.0 International License found here:
https://creativecommons.org/licenses/by-sa/4.0/, or any later version, and without limiting the
foregoing, OCP may make the Materials available under such terms.

As a contributor to this document, all members represent that they have the authority to grant the
rights and licenses herein. They further represent and warrant that the Materials do not and will not
violate the copyrights or misappropriate the trade secret rights of any third party, including without
limitation rights in intellectual property. The contributor(s) also represent that, to the extent the
Materials include materials protected by copyright or trade secret rights that are owned or created by
any third-party, they have obtained permission for its use consistent with the foregoing. They will
provide OCP evidence of such permission upon OCP’s request. This document and any "Materials" are
published on the respective project's wiki page and are open to the public in accordance with OCP's
Bylaws and IP Policy. This can be found at http://www.opencompute.org/participate/legal-
documents/. If you have any questions please contact OCP.

